Step |
Hyp |
Ref |
Expression |
1 |
|
ax-groth |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
2 |
|
ssdomg |
⊢ ( 𝑦 ∈ V → ( 𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦 ) ) |
3 |
2
|
elv |
⊢ ( 𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦 ) |
4 |
3
|
biantrurd |
⊢ ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ↔ ( 𝑧 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧 ) ) ) |
5 |
|
sbthb |
⊢ ( ( 𝑧 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧 ) ↔ 𝑧 ≈ 𝑦 ) |
6 |
4 5
|
bitrdi |
⊢ ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ↔ 𝑧 ≈ 𝑦 ) ) |
7 |
6
|
orbi1d |
⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
8 |
7
|
pm5.74i |
⊢ ( ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
9 |
8
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
10 |
9
|
3anbi3i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
12 |
1 11
|
mpbir |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |