Step |
Hyp |
Ref |
Expression |
1 |
|
axgroth2 |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
2 |
|
ssid |
⊢ 𝑧 ⊆ 𝑧 |
3 |
|
sseq1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 ⊆ 𝑧 ↔ 𝑧 ⊆ 𝑧 ) ) |
4 |
|
elequ1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
5 |
3 4
|
imbi12d |
⊢ ( 𝑣 = 𝑧 → ( ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ↔ ( 𝑧 ⊆ 𝑧 → 𝑧 ∈ 𝑤 ) ) ) |
6 |
5
|
spvv |
⊢ ( ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) → ( 𝑧 ⊆ 𝑧 → 𝑧 ∈ 𝑤 ) ) |
7 |
2 6
|
mpi |
⊢ ( ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) → 𝑧 ∈ 𝑤 ) |
8 |
7
|
reximi |
⊢ ( ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) |
9 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ 𝑦 ↔ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) |
10 |
8 9
|
sylibr |
⊢ ( ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) → 𝑧 ∈ ∪ 𝑦 ) |
11 |
10
|
adantl |
⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) → 𝑧 ∈ ∪ 𝑦 ) |
12 |
11
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ ∪ 𝑦 ) |
13 |
|
dfss3 |
⊢ ( 𝑦 ⊆ ∪ 𝑦 ↔ ∀ 𝑧 ∈ 𝑦 𝑧 ∈ ∪ 𝑦 ) |
14 |
12 13
|
sylibr |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) → 𝑦 ⊆ ∪ 𝑦 ) |
15 |
|
vex |
⊢ 𝑦 ∈ V |
16 |
|
grothac |
⊢ dom card = V |
17 |
15 16
|
eleqtrri |
⊢ 𝑦 ∈ dom card |
18 |
|
vex |
⊢ 𝑧 ∈ V |
19 |
18 16
|
eleqtrri |
⊢ 𝑧 ∈ dom card |
20 |
|
ne0i |
⊢ ( 𝑥 ∈ 𝑦 → 𝑦 ≠ ∅ ) |
21 |
15
|
dominf |
⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑦 ⊆ ∪ 𝑦 ) → ω ≼ 𝑦 ) |
22 |
20 21
|
sylan |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ω ≼ 𝑦 ) |
23 |
|
infdif2 |
⊢ ( ( 𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω ≼ 𝑦 ) → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ↔ 𝑦 ≼ 𝑧 ) ) |
24 |
17 19 22 23
|
mp3an12i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ↔ 𝑦 ≼ 𝑧 ) ) |
25 |
24
|
orbi1d |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ( ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ↔ ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
26 |
25
|
imbi2d |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ( ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
27 |
26
|
albidv |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ( ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
28 |
14 27
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) → ( ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
29 |
28
|
pm5.32i |
⊢ ( ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
30 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
31 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
32 |
29 30 31
|
3bitr4i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
33 |
32
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
34 |
1 33
|
mpbir |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |