Metamath Proof Explorer


Theorem axgroth3

Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc is used to derive this version. (Contributed by NM, 26-Mar-2007)

Ref Expression
Assertion axgroth3 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 axgroth2 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) )
2 ssid 𝑧𝑧
3 sseq1 ( 𝑣 = 𝑧 → ( 𝑣𝑧𝑧𝑧 ) )
4 elequ1 ( 𝑣 = 𝑧 → ( 𝑣𝑤𝑧𝑤 ) )
5 3 4 imbi12d ( 𝑣 = 𝑧 → ( ( 𝑣𝑧𝑣𝑤 ) ↔ ( 𝑧𝑧𝑧𝑤 ) ) )
6 5 spvv ( ∀ 𝑣 ( 𝑣𝑧𝑣𝑤 ) → ( 𝑧𝑧𝑧𝑤 ) )
7 2 6 mpi ( ∀ 𝑣 ( 𝑣𝑧𝑣𝑤 ) → 𝑧𝑤 )
8 7 reximi ( ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) → ∃ 𝑤𝑦 𝑧𝑤 )
9 eluni2 ( 𝑧 𝑦 ↔ ∃ 𝑤𝑦 𝑧𝑤 )
10 8 9 sylibr ( ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) → 𝑧 𝑦 )
11 10 adantl ( ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) → 𝑧 𝑦 )
12 11 ralimi ( ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) → ∀ 𝑧𝑦 𝑧 𝑦 )
13 dfss3 ( 𝑦 𝑦 ↔ ∀ 𝑧𝑦 𝑧 𝑦 )
14 12 13 sylibr ( ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) → 𝑦 𝑦 )
15 vex 𝑦 ∈ V
16 grothac dom card = V
17 15 16 eleqtrri 𝑦 ∈ dom card
18 vex 𝑧 ∈ V
19 18 16 eleqtrri 𝑧 ∈ dom card
20 ne0i ( 𝑥𝑦𝑦 ≠ ∅ )
21 15 dominf ( ( 𝑦 ≠ ∅ ∧ 𝑦 𝑦 ) → ω ≼ 𝑦 )
22 20 21 sylan ( ( 𝑥𝑦𝑦 𝑦 ) → ω ≼ 𝑦 )
23 infdif2 ( ( 𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω ≼ 𝑦 ) → ( ( 𝑦𝑧 ) ≼ 𝑧𝑦𝑧 ) )
24 17 19 22 23 mp3an12i ( ( 𝑥𝑦𝑦 𝑦 ) → ( ( 𝑦𝑧 ) ≼ 𝑧𝑦𝑧 ) )
25 24 orbi1d ( ( 𝑥𝑦𝑦 𝑦 ) → ( ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ↔ ( 𝑦𝑧𝑧𝑦 ) ) )
26 25 imbi2d ( ( 𝑥𝑦𝑦 𝑦 ) → ( ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ↔ ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) )
27 26 albidv ( ( 𝑥𝑦𝑦 𝑦 ) → ( ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) )
28 14 27 sylan2 ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ) → ( ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) )
29 28 pm5.32i ( ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ) ↔ ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) )
30 df-3an ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ) ↔ ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ) )
31 df-3an ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) ↔ ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) )
32 29 30 31 3bitr4i ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) )
33 32 exbii ( ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) )
34 1 33 mpbir 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) )