| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axgroth3 |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 2 |
|
elequ2 |
⊢ ( 𝑤 = 𝑣 → ( 𝑢 ∈ 𝑤 ↔ 𝑢 ∈ 𝑣 ) ) |
| 3 |
2
|
imbi2d |
⊢ ( 𝑤 = 𝑣 → ( ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ↔ ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ) |
| 4 |
3
|
albidv |
⊢ ( 𝑤 = 𝑣 → ( ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ↔ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ) |
| 5 |
4
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ↔ ∃ 𝑣 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) |
| 6 |
5
|
anbi2i |
⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑣 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ) |
| 7 |
|
r19.42v |
⊢ ( ∃ 𝑣 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑣 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ) |
| 8 |
|
sseq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 ⊆ 𝑧 ↔ 𝑤 ⊆ 𝑧 ) ) |
| 9 |
|
elequ1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 ∈ 𝑣 ↔ 𝑤 ∈ 𝑣 ) ) |
| 10 |
8 9
|
imbi12d |
⊢ ( 𝑢 = 𝑤 → ( ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ↔ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ) |
| 11 |
10
|
cbvalvw |
⊢ ( ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ↔ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) |
| 12 |
11
|
anbi2i |
⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ) |
| 13 |
|
19.26 |
⊢ ( ∀ 𝑤 ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ) |
| 14 |
|
pm4.76 |
⊢ ( ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ↔ ( 𝑤 ⊆ 𝑧 → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 15 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) |
| 16 |
15
|
imbi2i |
⊢ ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ( 𝑤 ⊆ 𝑧 → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 17 |
14 16
|
bitr4i |
⊢ ( ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ↔ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 18 |
17
|
albii |
⊢ ( ∀ 𝑤 ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ↔ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 19 |
12 13 18
|
3bitr2i |
⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ↔ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 20 |
19
|
rexbii |
⊢ ( ∃ 𝑣 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ↔ ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 21 |
6 7 20
|
3bitr2i |
⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 22 |
21
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 23 |
22
|
3anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 24 |
23
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 25 |
1 24
|
mpbi |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |