Metamath Proof Explorer


Theorem axgroth4

Description: Alternate version of the Tarski-Grothendieck Axiom. ax-ac is used to derive this version. (Contributed by NM, 16-Apr-2007)

Ref Expression
Assertion axgroth4 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑣𝑦𝑤 ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 axgroth3 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑢 ( 𝑢𝑧𝑢𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) )
2 elequ2 ( 𝑤 = 𝑣 → ( 𝑢𝑤𝑢𝑣 ) )
3 2 imbi2d ( 𝑤 = 𝑣 → ( ( 𝑢𝑧𝑢𝑤 ) ↔ ( 𝑢𝑧𝑢𝑣 ) ) )
4 3 albidv ( 𝑤 = 𝑣 → ( ∀ 𝑢 ( 𝑢𝑧𝑢𝑤 ) ↔ ∀ 𝑢 ( 𝑢𝑧𝑢𝑣 ) ) )
5 4 cbvrexvw ( ∃ 𝑤𝑦𝑢 ( 𝑢𝑧𝑢𝑤 ) ↔ ∃ 𝑣𝑦𝑢 ( 𝑢𝑧𝑢𝑣 ) )
6 5 anbi2i ( ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑢 ( 𝑢𝑧𝑢𝑤 ) ) ↔ ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑣𝑦𝑢 ( 𝑢𝑧𝑢𝑣 ) ) )
7 r19.42v ( ∃ 𝑣𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∀ 𝑢 ( 𝑢𝑧𝑢𝑣 ) ) ↔ ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑣𝑦𝑢 ( 𝑢𝑧𝑢𝑣 ) ) )
8 sseq1 ( 𝑢 = 𝑤 → ( 𝑢𝑧𝑤𝑧 ) )
9 elequ1 ( 𝑢 = 𝑤 → ( 𝑢𝑣𝑤𝑣 ) )
10 8 9 imbi12d ( 𝑢 = 𝑤 → ( ( 𝑢𝑧𝑢𝑣 ) ↔ ( 𝑤𝑧𝑤𝑣 ) ) )
11 10 cbvalvw ( ∀ 𝑢 ( 𝑢𝑧𝑢𝑣 ) ↔ ∀ 𝑤 ( 𝑤𝑧𝑤𝑣 ) )
12 11 anbi2i ( ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∀ 𝑢 ( 𝑢𝑧𝑢𝑣 ) ) ↔ ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∀ 𝑤 ( 𝑤𝑧𝑤𝑣 ) ) )
13 19.26 ( ∀ 𝑤 ( ( 𝑤𝑧𝑤𝑦 ) ∧ ( 𝑤𝑧𝑤𝑣 ) ) ↔ ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∀ 𝑤 ( 𝑤𝑧𝑤𝑣 ) ) )
14 pm4.76 ( ( ( 𝑤𝑧𝑤𝑦 ) ∧ ( 𝑤𝑧𝑤𝑣 ) ) ↔ ( 𝑤𝑧 → ( 𝑤𝑦𝑤𝑣 ) ) )
15 elin ( 𝑤 ∈ ( 𝑦𝑣 ) ↔ ( 𝑤𝑦𝑤𝑣 ) )
16 15 imbi2i ( ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) ↔ ( 𝑤𝑧 → ( 𝑤𝑦𝑤𝑣 ) ) )
17 14 16 bitr4i ( ( ( 𝑤𝑧𝑤𝑦 ) ∧ ( 𝑤𝑧𝑤𝑣 ) ) ↔ ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) )
18 17 albii ( ∀ 𝑤 ( ( 𝑤𝑧𝑤𝑦 ) ∧ ( 𝑤𝑧𝑤𝑣 ) ) ↔ ∀ 𝑤 ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) )
19 12 13 18 3bitr2i ( ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∀ 𝑢 ( 𝑢𝑧𝑢𝑣 ) ) ↔ ∀ 𝑤 ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) )
20 19 rexbii ( ∃ 𝑣𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∀ 𝑢 ( 𝑢𝑧𝑢𝑣 ) ) ↔ ∃ 𝑣𝑦𝑤 ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) )
21 6 7 20 3bitr2i ( ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑢 ( 𝑢𝑧𝑢𝑤 ) ) ↔ ∃ 𝑣𝑦𝑤 ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) )
22 21 ralbii ( ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑢 ( 𝑢𝑧𝑢𝑤 ) ) ↔ ∀ 𝑧𝑦𝑣𝑦𝑤 ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) )
23 22 3anbi2i ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑢 ( 𝑢𝑧𝑢𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑣𝑦𝑤 ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ) )
24 23 exbii ( ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑢 ( 𝑢𝑧𝑢𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑣𝑦𝑤 ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) ) )
25 1 24 mpbi 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑣𝑦𝑤 ( 𝑤𝑧𝑤 ∈ ( 𝑦𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( ( 𝑦𝑧 ) ≼ 𝑧𝑧𝑦 ) ) )