Step |
Hyp |
Ref |
Expression |
1 |
|
ax-groth |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
2 |
|
biid |
⊢ ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) |
3 |
|
pwss |
⊢ ( 𝒫 𝑧 ⊆ 𝑦 ↔ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ) |
4 |
|
pwss |
⊢ ( 𝒫 𝑧 ⊆ 𝑤 ↔ ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) |
5 |
4
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) |
6 |
3 5
|
anbi12i |
⊢ ( ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) |
8 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝒫 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
9 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 𝑦 ↔ 𝑧 ⊆ 𝑦 ) |
10 |
9
|
imbi1i |
⊢ ( ( 𝑧 ∈ 𝒫 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝒫 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
12 |
8 11
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
13 |
2 7 12
|
3anbi123i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
14 |
13
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
15 |
1 14
|
mpbir |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |