Metamath Proof Explorer


Theorem axinf2

Description: A standard version of Axiom of Infinity, expanded to primitives, derived from our version of Infinity ax-inf and Regularity ax-reg .

This theorem should not be referenced in any proof. Instead, use ax-inf2 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996)

Ref Expression
Assertion axinf2 𝑥 ( ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 peano1 ∅ ∈ ω
2 peano2 ( 𝑦 ∈ ω → suc 𝑦 ∈ ω )
3 2 ax-gen 𝑦 ( 𝑦 ∈ ω → suc 𝑦 ∈ ω )
4 zfinf 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
5 4 inf2 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 )
6 5 inf3 ω ∈ V
7 eleq2 ( 𝑥 = ω → ( ∅ ∈ 𝑥 ↔ ∅ ∈ ω ) )
8 eleq2 ( 𝑥 = ω → ( 𝑦𝑥𝑦 ∈ ω ) )
9 eleq2 ( 𝑥 = ω → ( suc 𝑦𝑥 ↔ suc 𝑦 ∈ ω ) )
10 8 9 imbi12d ( 𝑥 = ω → ( ( 𝑦𝑥 → suc 𝑦𝑥 ) ↔ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) ) )
11 10 albidv ( 𝑥 = ω → ( ∀ 𝑦 ( 𝑦𝑥 → suc 𝑦𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) ) )
12 7 11 anbi12d ( 𝑥 = ω → ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → suc 𝑦𝑥 ) ) ↔ ( ∅ ∈ ω ∧ ∀ 𝑦 ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) ) ) )
13 6 12 spcev ( ( ∅ ∈ ω ∧ ∀ 𝑦 ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) ) → ∃ 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → suc 𝑦𝑥 ) ) )
14 1 3 13 mp2an 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → suc 𝑦𝑥 ) )
15 0el ( ∅ ∈ 𝑥 ↔ ∃ 𝑦𝑥𝑧 ¬ 𝑧𝑦 )
16 df-rex ( ∃ 𝑦𝑥𝑧 ¬ 𝑧𝑦 ↔ ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) )
17 15 16 bitri ( ∅ ∈ 𝑥 ↔ ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) )
18 sucel ( suc 𝑦𝑥 ↔ ∃ 𝑧𝑥𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) )
19 df-rex ( ∃ 𝑧𝑥𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) )
20 18 19 bitri ( suc 𝑦𝑥 ↔ ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) )
21 20 imbi2i ( ( 𝑦𝑥 → suc 𝑦𝑥 ) ↔ ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) )
22 21 albii ( ∀ 𝑦 ( 𝑦𝑥 → suc 𝑦𝑥 ) ↔ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) )
23 17 22 anbi12i ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → suc 𝑦𝑥 ) ) ↔ ( ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) ) )
24 23 exbii ( ∃ 𝑥 ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → suc 𝑦𝑥 ) ) ↔ ∃ 𝑥 ( ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) ) )
25 14 24 mpbi 𝑥 ( ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑧𝑥 ∧ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) )