| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axinfndlem1 | ⊢ ( ∀ 𝑥 𝑤  ∈  𝑧  →  ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 2 | 1 | ax-gen | ⊢ ∀ 𝑤 ( ∀ 𝑥 𝑤  ∈  𝑧  →  ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑦 𝑦  =  𝑥 | 
						
							| 4 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 6 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑦 𝑦  =  𝑥 | 
						
							| 7 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 8 | 6 7 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 9 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑤 ) | 
						
							| 10 |  | nfcvf | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝑧 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑧 ) | 
						
							| 12 | 9 11 | nfeld | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑤  ∈  𝑧 ) | 
						
							| 13 | 8 12 | nfald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ∀ 𝑥 𝑤  ∈  𝑧 ) | 
						
							| 14 |  | nfcvf | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 16 | 9 15 | nfeld | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑤  ∈  𝑥 ) | 
						
							| 17 |  | nfnae | ⊢ Ⅎ 𝑤 ¬  ∀ 𝑦 𝑦  =  𝑥 | 
						
							| 18 |  | nfnae | ⊢ Ⅎ 𝑤 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 19 | 17 18 | nfan | ⊢ Ⅎ 𝑤 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 20 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑦 𝑦  =  𝑥 | 
						
							| 21 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 22 | 20 21 | nfan | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 23 | 11 15 | nfeld | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑧  ∈  𝑥 ) | 
						
							| 24 | 12 23 | nfand | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 25 | 22 24 | nfexd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) | 
						
							| 26 | 16 25 | nfimd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) | 
						
							| 27 | 19 26 | nfald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) | 
						
							| 28 | 16 27 | nfand | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 29 | 8 28 | nfexd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 30 | 13 29 | nfimd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ( ∀ 𝑥 𝑤  ∈  𝑧  →  ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 31 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 32 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 34 | 31 33 | nfeqd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑥 𝑤  =  𝑦 ) | 
						
							| 35 | 8 34 | nfan1 | ⊢ Ⅎ 𝑥 ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  𝑤  =  𝑦 ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( 𝑤  ∈  𝑧  ↔  𝑦  ∈  𝑧 ) ) | 
						
							| 38 | 35 37 | albid | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ∀ 𝑥 𝑤  ∈  𝑧  ↔  ∀ 𝑥 𝑦  ∈  𝑧 ) ) | 
						
							| 39 | 36 | eleq1d | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( 𝑤  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 40 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑧 𝑤 ) | 
						
							| 41 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 𝑦 ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑧 𝑦 ) | 
						
							| 43 | 40 42 | nfeqd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑧 𝑤  =  𝑦 ) | 
						
							| 44 | 22 43 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 ) | 
						
							| 45 | 37 | anbi1d | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 )  ↔  ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) | 
						
							| 46 | 44 45 | exbid | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 )  ↔  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) | 
						
							| 47 | 39 46 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) )  ↔  ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 48 | 47 | ex | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( 𝑤  =  𝑦  →  ( ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) )  ↔  ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 49 | 5 26 48 | cbvald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 51 | 39 50 | anbi12d | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) )  ↔  ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 52 | 35 51 | exbid | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) )  ↔  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 53 | 38 52 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ( ∀ 𝑥 𝑤  ∈  𝑧  →  ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) )  ↔  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( 𝑤  =  𝑦  →  ( ( ∀ 𝑥 𝑤  ∈  𝑧  →  ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) )  ↔  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) ) ) | 
						
							| 55 | 5 30 54 | cbvald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∀ 𝑤 ( ∀ 𝑥 𝑤  ∈  𝑧  →  ∃ 𝑥 ( 𝑤  ∈  𝑥  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ∃ 𝑧 ( 𝑤  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) )  ↔  ∀ 𝑦 ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) ) | 
						
							| 56 | 2 55 | mpbii | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ∀ 𝑦 ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 57 | 56 | 19.21bi | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 58 | 57 | ex | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) ) | 
						
							| 59 |  | nd1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ¬  ∀ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 60 | 59 | aecoms | ⊢ ( ∀ 𝑦 𝑦  =  𝑥  →  ¬  ∀ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 61 | 60 | pm2.21d | ⊢ ( ∀ 𝑦 𝑦  =  𝑥  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 62 |  | nd3 | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ¬  ∀ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 63 | 62 | pm2.21d | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 64 | 58 61 63 | pm2.61ii | ⊢ ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 65 | 64 | 19.35ri | ⊢ ∃ 𝑥 ( 𝑦  ∈  𝑧  →  ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) |