Metamath Proof Explorer


Theorem axinfnd

Description: A version of the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002)

Ref Expression
Assertion axinfnd 𝑥 ( 𝑦𝑧 → ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 axinfndlem1 ( ∀ 𝑥 𝑤𝑧 → ∃ 𝑥 ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) )
2 1 ax-gen 𝑤 ( ∀ 𝑥 𝑤𝑧 → ∃ 𝑥 ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) )
3 nfnae 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥
4 nfnae 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧
5 3 4 nfan 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 )
6 nfnae 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥
7 nfnae 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧
8 6 7 nfan 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 )
9 nfcvd ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → 𝑦 𝑤 )
10 nfcvf ( ¬ ∀ 𝑦 𝑦 = 𝑧 𝑦 𝑧 )
11 10 adantl ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → 𝑦 𝑧 )
12 9 11 nfeld ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤𝑧 )
13 8 12 nfald ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦𝑥 𝑤𝑧 )
14 nfcvf ( ¬ ∀ 𝑦 𝑦 = 𝑥 𝑦 𝑥 )
15 14 adantr ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → 𝑦 𝑥 )
16 9 15 nfeld ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤𝑥 )
17 nfnae 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑥
18 nfnae 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑧
19 17 18 nfan 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 )
20 nfnae 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥
21 nfnae 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧
22 20 21 nfan 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 )
23 11 15 nfeld ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧𝑥 )
24 12 23 nfand ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤𝑧𝑧𝑥 ) )
25 22 24 nfexd ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦𝑧 ( 𝑤𝑧𝑧𝑥 ) )
26 16 25 nfimd ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) )
27 19 26 nfald ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) )
28 16 27 nfand ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) )
29 8 28 nfexd ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦𝑥 ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) )
30 13 29 nfimd ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∀ 𝑥 𝑤𝑧 → ∃ 𝑥 ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) ) )
31 nfcvd ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → 𝑥 𝑤 )
32 nfcvf2 ( ¬ ∀ 𝑦 𝑦 = 𝑥 𝑥 𝑦 )
33 32 adantr ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → 𝑥 𝑦 )
34 31 33 nfeqd ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 = 𝑦 )
35 8 34 nfan1 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 )
36 simpr ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → 𝑤 = 𝑦 )
37 36 eleq1d ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤𝑧𝑦𝑧 ) )
38 35 37 albid ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑥 𝑤𝑧 ↔ ∀ 𝑥 𝑦𝑧 ) )
39 36 eleq1d ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤𝑥𝑦𝑥 ) )
40 nfcvd ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → 𝑧 𝑤 )
41 nfcvf2 ( ¬ ∀ 𝑦 𝑦 = 𝑧 𝑧 𝑦 )
42 41 adantl ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → 𝑧 𝑦 )
43 40 42 nfeqd ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑦 )
44 22 43 nfan1 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 )
45 37 anbi1d ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤𝑧𝑧𝑥 ) ↔ ( 𝑦𝑧𝑧𝑥 ) ) )
46 44 45 exbid ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ↔ ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
47 39 46 imbi12d ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ↔ ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
48 47 ex ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ↔ ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
49 5 26 48 cbvald ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
50 49 adantr ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
51 39 50 anbi12d ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) ↔ ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
52 35 51 exbid ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑥 ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) ↔ ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
53 38 52 imbi12d ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∀ 𝑥 𝑤𝑧 → ∃ 𝑥 ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) ) ↔ ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) ) )
54 53 ex ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 𝑤𝑧 → ∃ 𝑥 ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) ) ↔ ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) ) ) )
55 5 30 54 cbvald ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ∀ 𝑥 𝑤𝑧 → ∃ 𝑥 ( 𝑤𝑥 ∧ ∀ 𝑤 ( 𝑤𝑥 → ∃ 𝑧 ( 𝑤𝑧𝑧𝑥 ) ) ) ) ↔ ∀ 𝑦 ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) ) )
56 2 55 mpbii ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑦 ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
57 56 19.21bi ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
58 57 ex ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) ) )
59 nd1 ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑦𝑧 )
60 59 aecoms ( ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑥 𝑦𝑧 )
61 60 pm2.21d ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
62 nd3 ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑥 𝑦𝑧 )
63 62 pm2.21d ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
64 58 61 63 pm2.61ii ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
65 64 19.35ri 𝑥 ( 𝑦𝑧 → ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )