Step |
Hyp |
Ref |
Expression |
1 |
|
axinfndlem1 |
⊢ ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
2 |
1
|
ax-gen |
⊢ ∀ 𝑤 ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
3 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 |
4 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 |
5 |
3 4
|
nfan |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
6 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 |
7 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
8 |
6 7
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
9 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) |
10 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) |
11 |
10
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ) |
12 |
9 11
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ∈ 𝑧 ) |
13 |
8 12
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑥 𝑤 ∈ 𝑧 ) |
14 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) |
15 |
14
|
adantr |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
16 |
9 15
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
17 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑥 |
18 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑧 |
19 |
17 18
|
nfan |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
20 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥 |
21 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 |
22 |
20 21
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
23 |
11 15
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ∈ 𝑥 ) |
24 |
12 23
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) |
25 |
22 24
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) |
26 |
16 25
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
27 |
19 26
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
28 |
16 27
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
29 |
8 28
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
30 |
13 29
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
31 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) |
32 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑥 𝑦 ) |
33 |
32
|
adantr |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
34 |
31 33
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 = 𝑦 ) |
35 |
8 34
|
nfan1 |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
36 |
|
simpr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → 𝑤 = 𝑦 ) |
37 |
36
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
38 |
35 37
|
albid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑥 𝑤 ∈ 𝑧 ↔ ∀ 𝑥 𝑦 ∈ 𝑧 ) ) |
39 |
36
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
40 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 ) |
41 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) |
42 |
41
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑦 ) |
43 |
40 42
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑦 ) |
44 |
22 43
|
nfan1 |
⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
45 |
37
|
anbi1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
46 |
44 45
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
47 |
39 46
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
48 |
47
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
49 |
5 26 48
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
50 |
49
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
51 |
39 50
|
anbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
52 |
35 51
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
53 |
38 52
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) |
54 |
53
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) ) |
55 |
5 30 54
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ∀ 𝑦 ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) |
56 |
2 55
|
mpbii |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑦 ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
57 |
56
|
19.21bi |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
58 |
57
|
ex |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) |
59 |
|
nd1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑦 ∈ 𝑧 ) |
60 |
59
|
aecoms |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑥 𝑦 ∈ 𝑧 ) |
61 |
60
|
pm2.21d |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
62 |
|
nd3 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑥 𝑦 ∈ 𝑧 ) |
63 |
62
|
pm2.21d |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
64 |
58 61 63
|
pm2.61ii |
⊢ ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
65 |
64
|
19.35ri |
⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑧 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |