| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zfinf | ⊢ ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑤  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) ) | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 5 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 7 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 8 | 6 7 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑦  ∈  𝑤 ) | 
						
							| 9 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 10 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 12 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 13 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 14 | 12 13 | nfan | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 15 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 17 | 6 16 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 18 | 16 7 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧  ∈  𝑤 ) | 
						
							| 19 | 17 18 | nfand | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) | 
						
							| 20 | 14 19 | nfexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) | 
						
							| 21 | 8 20 | nfimd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑦  ∈  𝑤  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) ) | 
						
							| 22 | 11 21 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∀ 𝑦 ( 𝑦  ∈  𝑤  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) ) | 
						
							| 23 | 8 22 | nfand | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑦  ∈  𝑤  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑤  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  𝑤  =  𝑥 ) | 
						
							| 25 | 24 | eleq2d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 26 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑤 ) | 
						
							| 27 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 29 | 26 28 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑤  =  𝑥 ) | 
						
							| 30 | 11 29 | nfan1 | ⊢ Ⅎ 𝑦 ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 ) | 
						
							| 31 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑧 𝑤 ) | 
						
							| 32 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 34 | 31 33 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑧 𝑤  =  𝑥 ) | 
						
							| 35 | 14 34 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 ) | 
						
							| 36 |  | elequ2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 37 | 36 | anbi2d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ↔  ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ↔  ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) | 
						
							| 39 | 35 38 | exbid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ↔  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) | 
						
							| 40 | 25 39 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( 𝑦  ∈  𝑤  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) )  ↔  ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 41 | 30 40 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑦 ( 𝑦  ∈  𝑤  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 42 | 25 41 | anbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( 𝑦  ∈  𝑤  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑤  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) )  ↔  ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 43 | 42 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ( 𝑦  ∈  𝑤  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑤  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) )  ↔  ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) ) | 
						
							| 44 | 4 23 43 | cbvexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∃ 𝑤 ( 𝑦  ∈  𝑤  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑤  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) )  ↔  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 45 | 1 44 | mpbii | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 46 | 45 | a1d | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 47 | 46 | ex | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) ) | 
						
							| 48 |  | nd1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ¬  ∀ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 49 | 48 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 50 |  | nd2 | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ¬  ∀ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 51 | 50 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 52 | 47 49 51 | pm2.61ii | ⊢ ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  ∃ 𝑧 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑥 ) ) ) ) |