| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axlowdimlem10.1 |
⊢ 𝑄 = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) |
| 2 |
|
ovex |
⊢ ( 𝐼 + 1 ) ∈ V |
| 3 |
|
1ex |
⊢ 1 ∈ V |
| 4 |
2 3
|
f1osn |
⊢ { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } –1-1-onto→ { 1 } |
| 5 |
|
f1of |
⊢ ( { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } –1-1-onto→ { 1 } → { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } ⟶ { 1 } ) |
| 6 |
4 5
|
ax-mp |
⊢ { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } ⟶ { 1 } |
| 7 |
|
c0ex |
⊢ 0 ∈ V |
| 8 |
7
|
fconst |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } |
| 9 |
6 8
|
pm3.2i |
⊢ ( { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } ⟶ { 1 } ∧ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } ) |
| 10 |
|
disjdif |
⊢ ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ |
| 11 |
|
fun |
⊢ ( ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } : { ( 𝐼 + 1 ) } ⟶ { 1 } ∧ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } ) ∧ ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ ) → ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
| 12 |
9 10 11
|
mp2an |
⊢ ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) |
| 13 |
1
|
feq1i |
⊢ ( 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) ) |
| 14 |
12 13
|
mpbir |
⊢ 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) |
| 15 |
|
1re |
⊢ 1 ∈ ℝ |
| 16 |
|
snssi |
⊢ ( 1 ∈ ℝ → { 1 } ⊆ ℝ ) |
| 17 |
15 16
|
ax-mp |
⊢ { 1 } ⊆ ℝ |
| 18 |
|
0re |
⊢ 0 ∈ ℝ |
| 19 |
|
snssi |
⊢ ( 0 ∈ ℝ → { 0 } ⊆ ℝ ) |
| 20 |
18 19
|
ax-mp |
⊢ { 0 } ⊆ ℝ |
| 21 |
17 20
|
unssi |
⊢ ( { 1 } ∪ { 0 } ) ⊆ ℝ |
| 22 |
|
fss |
⊢ ( ( 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ( { 1 } ∪ { 0 } ) ∧ ( { 1 } ∪ { 0 } ) ⊆ ℝ ) → 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ℝ ) |
| 23 |
14 21 22
|
mp2an |
⊢ 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ℝ |
| 24 |
|
fznatpl1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐼 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 25 |
24
|
snssd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → { ( 𝐼 + 1 ) } ⊆ ( 1 ... 𝑁 ) ) |
| 26 |
|
undif |
⊢ ( { ( 𝐼 + 1 ) } ⊆ ( 1 ... 𝑁 ) ↔ ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ( 1 ... 𝑁 ) ) |
| 27 |
25 26
|
sylib |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ( 1 ... 𝑁 ) ) |
| 28 |
27
|
feq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑄 : ( { ( 𝐼 + 1 ) } ∪ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ⟶ ℝ ↔ 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
| 29 |
23 28
|
mpbii |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 30 |
|
elee |
⊢ ( 𝑁 ∈ ℕ → ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝑄 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
| 32 |
29 31
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |