| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axlowdimlem10.1 |
⊢ 𝑄 = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) |
| 2 |
1
|
fveq1i |
⊢ ( 𝑄 ‘ ( 𝐼 + 1 ) ) = ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ ( 𝐼 + 1 ) ) |
| 3 |
|
ovex |
⊢ ( 𝐼 + 1 ) ∈ V |
| 4 |
|
1ex |
⊢ 1 ∈ V |
| 5 |
3 4
|
fnsn |
⊢ { 〈 ( 𝐼 + 1 ) , 1 〉 } Fn { ( 𝐼 + 1 ) } |
| 6 |
|
c0ex |
⊢ 0 ∈ V |
| 7 |
6
|
fconst |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } |
| 8 |
|
ffn |
⊢ ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } → ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) |
| 10 |
|
disjdif |
⊢ ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ |
| 11 |
3
|
snid |
⊢ ( 𝐼 + 1 ) ∈ { ( 𝐼 + 1 ) } |
| 12 |
10 11
|
pm3.2i |
⊢ ( ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ ∧ ( 𝐼 + 1 ) ∈ { ( 𝐼 + 1 ) } ) |
| 13 |
|
fvun1 |
⊢ ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } Fn { ( 𝐼 + 1 ) } ∧ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ∧ ( ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ ∧ ( 𝐼 + 1 ) ∈ { ( 𝐼 + 1 ) } ) ) → ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ ( 𝐼 + 1 ) ) = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ‘ ( 𝐼 + 1 ) ) ) |
| 14 |
5 9 12 13
|
mp3an |
⊢ ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ ( 𝐼 + 1 ) ) = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ‘ ( 𝐼 + 1 ) ) |
| 15 |
3 4
|
fvsn |
⊢ ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ‘ ( 𝐼 + 1 ) ) = 1 |
| 16 |
2 14 15
|
3eqtri |
⊢ ( 𝑄 ‘ ( 𝐼 + 1 ) ) = 1 |