Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem10.1 |
⊢ 𝑄 = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) |
2 |
1
|
fveq1i |
⊢ ( 𝑄 ‘ 𝐾 ) = ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) |
3 |
|
eldifsn |
⊢ ( 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ↔ ( 𝐾 ∈ ( 1 ... 𝑁 ) ∧ 𝐾 ≠ ( 𝐼 + 1 ) ) ) |
4 |
|
disjdif |
⊢ ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ |
5 |
|
ovex |
⊢ ( 𝐼 + 1 ) ∈ V |
6 |
|
1ex |
⊢ 1 ∈ V |
7 |
5 6
|
fnsn |
⊢ { 〈 ( 𝐼 + 1 ) , 1 〉 } Fn { ( 𝐼 + 1 ) } |
8 |
|
c0ex |
⊢ 0 ∈ V |
9 |
8
|
fconst |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } |
10 |
|
ffn |
⊢ ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) : ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ⟶ { 0 } → ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) |
11 |
9 10
|
ax-mp |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) |
12 |
|
fvun2 |
⊢ ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } Fn { ( 𝐼 + 1 ) } ∧ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) Fn ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ∧ ( ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ ∧ 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) ) → ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ‘ 𝐾 ) ) |
13 |
7 11 12
|
mp3an12 |
⊢ ( ( ( { ( 𝐼 + 1 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) = ∅ ∧ 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) → ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ‘ 𝐾 ) ) |
14 |
4 13
|
mpan |
⊢ ( 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) → ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ‘ 𝐾 ) ) |
15 |
8
|
fvconst2 |
⊢ ( 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) → ( ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ‘ 𝐾 ) = 0 ) |
16 |
14 15
|
eqtrd |
⊢ ( 𝐾 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) → ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = 0 ) |
17 |
3 16
|
sylbir |
⊢ ( ( 𝐾 ∈ ( 1 ... 𝑁 ) ∧ 𝐾 ≠ ( 𝐼 + 1 ) ) → ( ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ‘ 𝐾 ) = 0 ) |
18 |
2 17
|
eqtrid |
⊢ ( ( 𝐾 ∈ ( 1 ... 𝑁 ) ∧ 𝐾 ≠ ( 𝐼 + 1 ) ) → ( 𝑄 ‘ 𝐾 ) = 0 ) |