Metamath Proof Explorer


Theorem axlttrn

Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. This restates ax-pre-lttrn with ordering on the extended reals. New proofs should use lttr instead for naming consistency. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion axlttrn ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ax-pre-lttrn ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )
2 ltxrlt ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴 < 𝐵 ) )
3 2 3adant3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴 < 𝐵 ) )
4 ltxrlt ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶𝐵 < 𝐶 ) )
5 4 3adant1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶𝐵 < 𝐶 ) )
6 3 5 anbi12d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) ↔ ( 𝐴 < 𝐵𝐵 < 𝐶 ) ) )
7 ltxrlt ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶𝐴 < 𝐶 ) )
8 7 3adant2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶𝐴 < 𝐶 ) )
9 1 6 8 3imtr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )