Step |
Hyp |
Ref |
Expression |
1 |
|
dfcnqs |
⊢ ℂ = ( ( R × R ) / ◡ E ) |
2 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E ) |
3 |
|
mulcnsrec |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E · [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) , ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) 〉 ] ◡ E ) |
4 |
|
mulcnsrec |
⊢ ( ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E · [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) +R ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) ) , ( ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) +R ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) ) 〉 ] ◡ E ) |
5 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) , ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) ) , ( ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) 〉 ] ◡ E ) |
6 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑥 ·R 𝑧 ) ∈ R ) |
7 |
|
m1r |
⊢ -1R ∈ R |
8 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑦 ·R 𝑤 ) ∈ R ) |
9 |
|
mulclsr |
⊢ ( ( -1R ∈ R ∧ ( 𝑦 ·R 𝑤 ) ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
10 |
7 8 9
|
sylancr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
11 |
|
addclsr |
⊢ ( ( ( 𝑥 ·R 𝑧 ) ∈ R ∧ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
12 |
6 10 11
|
syl2an |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
13 |
12
|
an4s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
14 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑦 ·R 𝑧 ) ∈ R ) |
15 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑥 ·R 𝑤 ) ∈ R ) |
16 |
|
addclsr |
⊢ ( ( ( 𝑦 ·R 𝑧 ) ∈ R ∧ ( 𝑥 ·R 𝑤 ) ∈ R ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
17 |
14 15 16
|
syl2anr |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
18 |
17
|
an42s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
19 |
13 18
|
jca |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ) |
20 |
|
mulclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 ·R 𝑣 ) ∈ R ) |
21 |
|
mulclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 ·R 𝑢 ) ∈ R ) |
22 |
|
mulclsr |
⊢ ( ( -1R ∈ R ∧ ( 𝑤 ·R 𝑢 ) ∈ R ) → ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) |
23 |
7 21 22
|
sylancr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) |
24 |
|
addclsr |
⊢ ( ( ( 𝑧 ·R 𝑣 ) ∈ R ∧ ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
25 |
20 23 24
|
syl2an |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
26 |
25
|
an4s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
27 |
|
mulclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑤 ·R 𝑣 ) ∈ R ) |
28 |
|
mulclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑧 ·R 𝑢 ) ∈ R ) |
29 |
|
addclsr |
⊢ ( ( ( 𝑤 ·R 𝑣 ) ∈ R ∧ ( 𝑧 ·R 𝑢 ) ∈ R ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
30 |
27 28 29
|
syl2anr |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑢 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑣 ∈ R ) ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
31 |
30
|
an42s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
32 |
26 31
|
jca |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) ) |
33 |
|
ovex |
⊢ ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) ∈ V |
34 |
|
ovex |
⊢ ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ V |
35 |
|
ovex |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ∈ V |
36 |
|
addcomsr |
⊢ ( 𝑓 +R 𝑔 ) = ( 𝑔 +R 𝑓 ) |
37 |
|
addasssr |
⊢ ( ( 𝑓 +R 𝑔 ) +R ℎ ) = ( 𝑓 +R ( 𝑔 +R ℎ ) ) |
38 |
|
ovex |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ∈ V |
39 |
33 34 35 36 37 38
|
caov42 |
⊢ ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) ) = ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
40 |
|
distrsr |
⊢ ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
41 |
|
distrsr |
⊢ ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) = ( ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) |
42 |
41
|
oveq2i |
⊢ ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) = ( -1R ·R ( ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
43 |
|
distrsr |
⊢ ( -1R ·R ( ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
44 |
42 43
|
eqtri |
⊢ ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
45 |
40 44
|
oveq12i |
⊢ ( ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) ) = ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) ) |
46 |
|
vex |
⊢ 𝑥 ∈ V |
47 |
7
|
elexi |
⊢ -1R ∈ V |
48 |
|
vex |
⊢ 𝑧 ∈ V |
49 |
|
mulcomsr |
⊢ ( 𝑓 ·R 𝑔 ) = ( 𝑔 ·R 𝑓 ) |
50 |
|
distrsr |
⊢ ( 𝑓 ·R ( 𝑔 +R ℎ ) ) = ( ( 𝑓 ·R 𝑔 ) +R ( 𝑓 ·R ℎ ) ) |
51 |
|
ovex |
⊢ ( 𝑦 ·R 𝑤 ) ∈ V |
52 |
|
vex |
⊢ 𝑣 ∈ V |
53 |
|
mulasssr |
⊢ ( ( 𝑓 ·R 𝑔 ) ·R ℎ ) = ( 𝑓 ·R ( 𝑔 ·R ℎ ) ) |
54 |
46 47 48 49 50 51 52 53
|
caovdilem |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) ) ) |
55 |
|
mulasssr |
⊢ ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) = ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) |
56 |
55
|
oveq2i |
⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) ) = ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) |
57 |
56
|
oveq2i |
⊢ ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) ) ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) |
58 |
54 57
|
eqtri |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) |
59 |
|
vex |
⊢ 𝑦 ∈ V |
60 |
|
vex |
⊢ 𝑤 ∈ V |
61 |
|
vex |
⊢ 𝑢 ∈ V |
62 |
59 46 48 49 50 60 61 53
|
caovdilem |
⊢ ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) = ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) |
63 |
62
|
oveq2i |
⊢ ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) = ( -1R ·R ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
64 |
|
distrsr |
⊢ ( -1R ·R ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( -1R ·R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
65 |
|
ovex |
⊢ ( 𝑤 ·R 𝑢 ) ∈ V |
66 |
47 46 65 49 53
|
caov12 |
⊢ ( -1R ·R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) = ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) |
67 |
66
|
oveq2i |
⊢ ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( -1R ·R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
68 |
64 67
|
eqtri |
⊢ ( -1R ·R ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
69 |
63 68
|
eqtri |
⊢ ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
70 |
58 69
|
oveq12i |
⊢ ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) +R ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) ) = ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
71 |
39 45 70
|
3eqtr4ri |
⊢ ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) +R ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) ) = ( ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) ) |
72 |
|
ovex |
⊢ ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) ∈ V |
73 |
|
ovex |
⊢ ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ V |
74 |
|
ovex |
⊢ ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ∈ V |
75 |
|
ovex |
⊢ ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ∈ V |
76 |
72 73 74 36 37 75
|
caov42 |
⊢ ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
77 |
|
distrsr |
⊢ ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
78 |
|
distrsr |
⊢ ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) = ( ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ) |
79 |
77 78
|
oveq12i |
⊢ ( ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
80 |
59 46 48 49 50 60 52 53
|
caovdilem |
⊢ ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) = ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ) |
81 |
46 47 48 49 50 51 61 53
|
caovdilem |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) ) |
82 |
|
mulasssr |
⊢ ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) = ( 𝑦 ·R ( 𝑤 ·R 𝑢 ) ) |
83 |
82
|
oveq2i |
⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) = ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑢 ) ) ) |
84 |
47 59 65 49 53
|
caov12 |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑢 ) ) ) = ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) |
85 |
83 84
|
eqtri |
⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) = ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) |
86 |
85
|
oveq2i |
⊢ ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
87 |
81 86
|
eqtri |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
88 |
80 87
|
oveq12i |
⊢ ( ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) +R ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) ) = ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
89 |
76 79 88
|
3eqtr4ri |
⊢ ( ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) +R ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) ) = ( ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) |
90 |
1 2 3 4 5 19 32 71 89
|
ecovass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |