Step |
Hyp |
Ref |
Expression |
1 |
|
dfcnqs |
⊢ ℂ = ( ( R × R ) / ◡ E ) |
2 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E ) |
3 |
|
mulcnsrec |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E · [ 〈 𝑥 , 𝑦 〉 ] ◡ E ) = [ 〈 ( ( 𝑧 ·R 𝑥 ) +R ( -1R ·R ( 𝑤 ·R 𝑦 ) ) ) , ( ( 𝑤 ·R 𝑥 ) +R ( 𝑧 ·R 𝑦 ) ) 〉 ] ◡ E ) |
4 |
|
mulcomsr |
⊢ ( 𝑥 ·R 𝑧 ) = ( 𝑧 ·R 𝑥 ) |
5 |
|
mulcomsr |
⊢ ( 𝑦 ·R 𝑤 ) = ( 𝑤 ·R 𝑦 ) |
6 |
5
|
oveq2i |
⊢ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) = ( -1R ·R ( 𝑤 ·R 𝑦 ) ) |
7 |
4 6
|
oveq12i |
⊢ ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) = ( ( 𝑧 ·R 𝑥 ) +R ( -1R ·R ( 𝑤 ·R 𝑦 ) ) ) |
8 |
|
mulcomsr |
⊢ ( 𝑦 ·R 𝑧 ) = ( 𝑧 ·R 𝑦 ) |
9 |
|
mulcomsr |
⊢ ( 𝑥 ·R 𝑤 ) = ( 𝑤 ·R 𝑥 ) |
10 |
8 9
|
oveq12i |
⊢ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) = ( ( 𝑧 ·R 𝑦 ) +R ( 𝑤 ·R 𝑥 ) ) |
11 |
|
addcomsr |
⊢ ( ( 𝑧 ·R 𝑦 ) +R ( 𝑤 ·R 𝑥 ) ) = ( ( 𝑤 ·R 𝑥 ) +R ( 𝑧 ·R 𝑦 ) ) |
12 |
10 11
|
eqtri |
⊢ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) = ( ( 𝑤 ·R 𝑥 ) +R ( 𝑧 ·R 𝑦 ) ) |
13 |
1 2 3 7 12
|
ecovcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |