Step |
Hyp |
Ref |
Expression |
1 |
|
moeq |
⊢ ∃* 𝑧 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 |
2 |
1
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) |
3 |
2
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) |
4 |
|
anass |
⊢ ( ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ↔ ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) ) |
5 |
4
|
2exbii |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ↔ ∃ 𝑢 ∃ 𝑓 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) ) |
6 |
|
19.42vv |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) ↔ ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) ) |
7 |
5 6
|
bitri |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ↔ ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) ) |
8 |
7
|
2exbii |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ↔ ∃ 𝑤 ∃ 𝑣 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) ) |
9 |
8
|
mobii |
⊢ ( ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ↔ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) ) |
10 |
3 9
|
mpbir |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) |
11 |
10
|
moani |
⊢ ∃* 𝑧 ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) |
12 |
11
|
funoprab |
⊢ Fun { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) } |
13 |
|
df-mul |
⊢ · = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) } |
14 |
13
|
funeqi |
⊢ ( Fun · ↔ Fun { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) } ) |
15 |
12 14
|
mpbir |
⊢ Fun · |
16 |
13
|
dmeqi |
⊢ dom · = dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) } |
17 |
|
dmoprabss |
⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) } ⊆ ( ℂ × ℂ ) |
18 |
16 17
|
eqsstri |
⊢ dom · ⊆ ( ℂ × ℂ ) |
19 |
|
0ncn |
⊢ ¬ ∅ ∈ ℂ |
20 |
|
df-c |
⊢ ℂ = ( R × R ) |
21 |
|
oveq1 |
⊢ ( 〈 𝑧 , 𝑤 〉 = 𝑥 → ( 〈 𝑧 , 𝑤 〉 · 〈 𝑣 , 𝑢 〉 ) = ( 𝑥 · 〈 𝑣 , 𝑢 〉 ) ) |
22 |
21
|
eleq1d |
⊢ ( 〈 𝑧 , 𝑤 〉 = 𝑥 → ( ( 〈 𝑧 , 𝑤 〉 · 〈 𝑣 , 𝑢 〉 ) ∈ ( R × R ) ↔ ( 𝑥 · 〈 𝑣 , 𝑢 〉 ) ∈ ( R × R ) ) ) |
23 |
|
oveq2 |
⊢ ( 〈 𝑣 , 𝑢 〉 = 𝑦 → ( 𝑥 · 〈 𝑣 , 𝑢 〉 ) = ( 𝑥 · 𝑦 ) ) |
24 |
23
|
eleq1d |
⊢ ( 〈 𝑣 , 𝑢 〉 = 𝑦 → ( ( 𝑥 · 〈 𝑣 , 𝑢 〉 ) ∈ ( R × R ) ↔ ( 𝑥 · 𝑦 ) ∈ ( R × R ) ) ) |
25 |
|
mulcnsr |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( 〈 𝑧 , 𝑤 〉 · 〈 𝑣 , 𝑢 〉 ) = 〈 ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) , ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) 〉 ) |
26 |
|
mulclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 ·R 𝑣 ) ∈ R ) |
27 |
|
m1r |
⊢ -1R ∈ R |
28 |
|
mulclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 ·R 𝑢 ) ∈ R ) |
29 |
|
mulclsr |
⊢ ( ( -1R ∈ R ∧ ( 𝑤 ·R 𝑢 ) ∈ R ) → ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) |
30 |
27 28 29
|
sylancr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) |
31 |
|
addclsr |
⊢ ( ( ( 𝑧 ·R 𝑣 ) ∈ R ∧ ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
32 |
26 30 31
|
syl2an |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
33 |
32
|
an4s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
34 |
|
mulclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑤 ·R 𝑣 ) ∈ R ) |
35 |
|
mulclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑧 ·R 𝑢 ) ∈ R ) |
36 |
|
addclsr |
⊢ ( ( ( 𝑤 ·R 𝑣 ) ∈ R ∧ ( 𝑧 ·R 𝑢 ) ∈ R ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
37 |
34 35 36
|
syl2anr |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑢 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑣 ∈ R ) ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
38 |
37
|
an42s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
39 |
33 38
|
opelxpd |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → 〈 ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) , ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) 〉 ∈ ( R × R ) ) |
40 |
25 39
|
eqeltrd |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( 〈 𝑧 , 𝑤 〉 · 〈 𝑣 , 𝑢 〉 ) ∈ ( R × R ) ) |
41 |
20 22 24 40
|
2optocl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ( R × R ) ) |
42 |
41 20
|
eleqtrrdi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
43 |
19 42
|
oprssdm |
⊢ ( ℂ × ℂ ) ⊆ dom · |
44 |
18 43
|
eqssi |
⊢ dom · = ( ℂ × ℂ ) |
45 |
|
df-fn |
⊢ ( · Fn ( ℂ × ℂ ) ↔ ( Fun · ∧ dom · = ( ℂ × ℂ ) ) ) |
46 |
15 44 45
|
mpbir2an |
⊢ · Fn ( ℂ × ℂ ) |
47 |
42
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( 𝑥 · 𝑦 ) ∈ ℂ |
48 |
|
ffnov |
⊢ ( · : ( ℂ × ℂ ) ⟶ ℂ ↔ ( · Fn ( ℂ × ℂ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( 𝑥 · 𝑦 ) ∈ ℂ ) ) |
49 |
46 47 48
|
mpbir2an |
⊢ · : ( ℂ × ℂ ) ⟶ ℂ |