| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-pre-mulgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) → 0 <ℝ ( 𝐴 · 𝐵 ) ) ) |
| 2 |
|
0re |
⊢ 0 ∈ ℝ |
| 3 |
|
ltxrlt |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ 0 <ℝ 𝐴 ) ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ 0 <ℝ 𝐴 ) ) |
| 5 |
|
ltxrlt |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 ↔ 0 <ℝ 𝐵 ) ) |
| 6 |
2 5
|
mpan |
⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 ↔ 0 <ℝ 𝐵 ) ) |
| 7 |
4 6
|
bi2anan9 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) ↔ ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) ) ) |
| 8 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 9 |
|
ltxrlt |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 · 𝐵 ) ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐵 ) ↔ 0 <ℝ ( 𝐴 · 𝐵 ) ) ) |
| 10 |
2 8 9
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐵 ) ↔ 0 <ℝ ( 𝐴 · 𝐵 ) ) ) |
| 11 |
1 7 10
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → 0 < ( 𝐴 · 𝐵 ) ) ) |