Step |
Hyp |
Ref |
Expression |
1 |
|
ax-rep |
⊢ ( ∀ 𝑤 ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) → ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) ) |
2 |
|
sp |
⊢ ( ∀ 𝑥 ¬ ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) → ¬ ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ) |
3 |
2
|
con2i |
⊢ ( ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) → ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ) |
4 |
|
df-ex |
⊢ ( ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ) |
5 |
3 4
|
sylibr |
⊢ ( ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) ) |
6 |
|
fal |
⊢ ¬ ⊥ |
7 |
|
sp |
⊢ ( ∀ 𝑥 ⊥ → ⊥ ) |
8 |
6 7
|
mto |
⊢ ¬ ∀ 𝑥 ⊥ |
9 |
8
|
pm2.21i |
⊢ ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) |
10 |
5 9
|
mpg |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ⊥ → 𝑦 = 𝑥 ) |
11 |
1 10
|
mpg |
⊢ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) |
12 |
8
|
intnan |
⊢ ¬ ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) |
13 |
12
|
nex |
⊢ ¬ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) |
14 |
13
|
nbn |
⊢ ( ¬ 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) ) |
16 |
15
|
exbii |
⊢ ( ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑥 ⊥ ) ) ) |
17 |
11 16
|
mpbir |
⊢ ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 |