Description: Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axorbciffatcxorb.1 | ⊢ ( 𝜑 ⊻ 𝜓 ) | |
| axorbciffatcxorb.2 | ⊢ ( 𝜒 ↔ 𝜑 ) | ||
| Assertion | axorbciffatcxorb | ⊢ ( 𝜒 ⊻ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axorbciffatcxorb.1 | ⊢ ( 𝜑 ⊻ 𝜓 ) | |
| 2 | axorbciffatcxorb.2 | ⊢ ( 𝜒 ↔ 𝜑 ) | |
| 3 | 1 | axorbtnotaiffb | ⊢ ¬ ( 𝜑 ↔ 𝜓 ) |
| 4 | xor3 | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) ) | |
| 5 | 3 4 | mpbi | ⊢ ( 𝜑 ↔ ¬ 𝜓 ) |
| 6 | 5 2 | aiffnbandciffatnotciffb | ⊢ ¬ ( 𝜒 ↔ 𝜓 ) |
| 7 | df-xor | ⊢ ( ( 𝜒 ⊻ 𝜓 ) ↔ ¬ ( 𝜒 ↔ 𝜓 ) ) | |
| 8 | 6 7 | mpbir | ⊢ ( 𝜒 ⊻ 𝜓 ) |