Metamath Proof Explorer


Theorem axpjpj

Description: Decomposition of a vector into projections. See comment in axpjcl . (Contributed by NM, 26-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion axpjpj ( ( 𝐻C𝐴 ∈ ℋ ) → 𝐴 = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐻C𝐴 ∈ ℋ ) → 𝐻C )
2 pjhth ( 𝐻C → ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) = ℋ )
3 2 eleq2d ( 𝐻C → ( 𝐴 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ↔ 𝐴 ∈ ℋ ) )
4 3 biimpar ( ( 𝐻C𝐴 ∈ ℋ ) → 𝐴 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) )
5 1 4 pjpjpre ( ( 𝐻C𝐴 ∈ ℋ ) → 𝐴 = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )