Metamath Proof Explorer


Theorem axpow2

Description: A variant of the Axiom of Power Sets ax-pow using subset notation. Problem in BellMachover p. 466. (Contributed by NM, 4-Jun-2006)

Ref Expression
Assertion axpow2 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 )

Proof

Step Hyp Ref Expression
1 ax-pow 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 )
2 dfss2 ( 𝑧𝑥 ↔ ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) )
3 2 imbi1i ( ( 𝑧𝑥𝑧𝑦 ) ↔ ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
4 3 albii ( ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
5 4 exbii ( ∃ 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 ) ↔ ∃ 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
6 1 5 mpbir 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 )