Description: A variant of the Axiom of Power Sets ax-pow using subset notation. Problem in BellMachover p. 466. (Contributed by NM, 4-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | axpow2 | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pow | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) | |
2 | dfss2 | ⊢ ( 𝑧 ⊆ 𝑥 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ) | |
3 | 2 | imbi1i | ⊢ ( ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
4 | 3 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
5 | 4 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
6 | 1 5 | mpbir | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) |