Description: A variant of the Axiom of Power Sets ax-pow . For any set x , there exists a set y whose members are exactly the subsets of x i.e. the power set of x . Axiom Pow of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | axpow3 | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpow2 | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) | |
2 | 1 | bm1.3ii | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) |
3 | bicom | ⊢ ( ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) ) | |
4 | 3 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) ) |
5 | 4 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) ) |
6 | 2 5 | mpbir | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦 ) |