Metamath Proof Explorer


Theorem axpow3

Description: A variant of the Axiom of Power Sets ax-pow . For any set x , there exists a set y whose members are exactly the subsets of x i.e. the power set of x . Axiom Pow of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)

Ref Expression
Assertion axpow3 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 )

Proof

Step Hyp Ref Expression
1 axpow2 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 )
2 1 bm1.3ii 𝑦𝑧 ( 𝑧𝑦𝑧𝑥 )
3 bicom ( ( 𝑧𝑥𝑧𝑦 ) ↔ ( 𝑧𝑦𝑧𝑥 ) )
4 3 albii ( ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) ↔ ∀ 𝑧 ( 𝑧𝑦𝑧𝑥 ) )
5 4 exbii ( ∃ 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 ) ↔ ∃ 𝑦𝑧 ( 𝑧𝑦𝑧𝑥 ) )
6 2 5 mpbir 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 )