Description: A variant of the Axiom of Power Sets ax-pow . For any set x , there exists a set y whose members are exactly the subsets of x i.e. the power set of x . Axiom Pow of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpow3 | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axpow2 | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) | |
| 2 | 1 | sepexi | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) |
| 3 | bicom1 | ⊢ ( ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) → ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) | |
| 4 | 3 | alimi | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) → ∀ 𝑧 ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
| 5 | 2 4 | eximii | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦 ) |