| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sp | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  𝑥  =  𝑦 ) | 
						
							| 2 |  | p0ex | ⊢ { ∅ }  ∈  V | 
						
							| 3 |  | eleq2 | ⊢ ( 𝑥  =  { ∅ }  →  ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  { ∅ } ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑥  =  { ∅ }  →  ( ( 𝑤  =  ∅  →  𝑤  ∈  𝑥 )  ↔  ( 𝑤  =  ∅  →  𝑤  ∈  { ∅ } ) ) ) | 
						
							| 5 | 4 | albidv | ⊢ ( 𝑥  =  { ∅ }  →  ( ∀ 𝑤 ( 𝑤  =  ∅  →  𝑤  ∈  𝑥 )  ↔  ∀ 𝑤 ( 𝑤  =  ∅  →  𝑤  ∈  { ∅ } ) ) ) | 
						
							| 6 | 2 5 | spcev | ⊢ ( ∀ 𝑤 ( 𝑤  =  ∅  →  𝑤  ∈  { ∅ } )  →  ∃ 𝑥 ∀ 𝑤 ( 𝑤  =  ∅  →  𝑤  ∈  𝑥 ) ) | 
						
							| 7 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 8 | 7 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 9 |  | eleq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑤  ∈  { ∅ }  ↔  ∅  ∈  { ∅ } ) ) | 
						
							| 10 | 8 9 | mpbiri | ⊢ ( 𝑤  =  ∅  →  𝑤  ∈  { ∅ } ) | 
						
							| 11 | 6 10 | mpg | ⊢ ∃ 𝑥 ∀ 𝑤 ( 𝑤  =  ∅  →  𝑤  ∈  𝑥 ) | 
						
							| 12 |  | neq0 | ⊢ ( ¬  𝑤  =  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝑤 ) | 
						
							| 13 | 12 | con1bii | ⊢ ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  ↔  𝑤  =  ∅ ) | 
						
							| 14 | 13 | imbi1i | ⊢ ( ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  →  𝑤  ∈  𝑥 )  ↔  ( 𝑤  =  ∅  →  𝑤  ∈  𝑥 ) ) | 
						
							| 15 | 14 | albii | ⊢ ( ∀ 𝑤 ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  →  𝑤  ∈  𝑥 )  ↔  ∀ 𝑤 ( 𝑤  =  ∅  →  𝑤  ∈  𝑥 ) ) | 
						
							| 16 | 15 | exbii | ⊢ ( ∃ 𝑥 ∀ 𝑤 ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  →  𝑤  ∈  𝑥 )  ↔  ∃ 𝑥 ∀ 𝑤 ( 𝑤  =  ∅  →  𝑤  ∈  𝑥 ) ) | 
						
							| 17 | 11 16 | mpbir | ⊢ ∃ 𝑥 ∀ 𝑤 ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  →  𝑤  ∈  𝑥 ) | 
						
							| 18 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 19 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 20 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 21 |  | nfcvd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑤 ) | 
						
							| 22 | 20 21 | nfeld | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑥  ∈  𝑤 ) | 
						
							| 23 | 18 22 | nfexd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 ∃ 𝑥 𝑥  ∈  𝑤 ) | 
						
							| 24 | 23 | nfnd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 ¬  ∃ 𝑥 𝑥  ∈  𝑤 ) | 
						
							| 25 | 21 20 | nfeld | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑤  ∈  𝑥 ) | 
						
							| 26 | 24 25 | nfimd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  →  𝑤  ∈  𝑥 ) ) | 
						
							| 27 |  | nfeqf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑤  =  𝑦 ) | 
						
							| 28 | 18 27 | nfan1 | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  𝑤  =  𝑦 ) | 
						
							| 29 |  | elequ2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  𝑤  =  𝑦 )  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 31 | 28 30 | exbid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  𝑤  =  𝑦 )  →  ( ∃ 𝑥 𝑥  ∈  𝑤  ↔  ∃ 𝑥 𝑥  ∈  𝑦 ) ) | 
						
							| 32 | 31 | notbid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  𝑤  =  𝑦 )  →  ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  ↔  ¬  ∃ 𝑥 𝑥  ∈  𝑦 ) ) | 
						
							| 33 |  | elequ1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  𝑤  =  𝑦 )  →  ( 𝑤  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 35 | 32 34 | imbi12d | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  𝑤  =  𝑦 )  →  ( ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  →  𝑤  ∈  𝑥 )  ↔  ( ¬  ∃ 𝑥 𝑥  ∈  𝑦  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( 𝑤  =  𝑦  →  ( ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  →  𝑤  ∈  𝑥 )  ↔  ( ¬  ∃ 𝑥 𝑥  ∈  𝑦  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 37 | 19 26 36 | cbvald | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑤 ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  →  𝑤  ∈  𝑥 )  ↔  ∀ 𝑦 ( ¬  ∃ 𝑥 𝑥  ∈  𝑦  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 38 | 18 37 | exbid | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑥 ∀ 𝑤 ( ¬  ∃ 𝑥 𝑥  ∈  𝑤  →  𝑤  ∈  𝑥 )  ↔  ∃ 𝑥 ∀ 𝑦 ( ¬  ∃ 𝑥 𝑥  ∈  𝑦  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 39 | 17 38 | mpbii | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ¬  ∃ 𝑥 𝑥  ∈  𝑦  →  𝑦  ∈  𝑥 ) ) | 
						
							| 40 |  | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 41 |  | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 42 |  | axc11r | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑧 ¬  𝑥  ∈  𝑦  →  ∀ 𝑥 ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 43 |  | alnex | ⊢ ( ∀ 𝑧 ¬  𝑥  ∈  𝑦  ↔  ¬  ∃ 𝑧 𝑥  ∈  𝑦 ) | 
						
							| 44 |  | alnex | ⊢ ( ∀ 𝑥 ¬  𝑥  ∈  𝑦  ↔  ¬  ∃ 𝑥 𝑥  ∈  𝑦 ) | 
						
							| 45 | 42 43 44 | 3imtr3g | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ¬  ∃ 𝑧 𝑥  ∈  𝑦  →  ¬  ∃ 𝑥 𝑥  ∈  𝑦 ) ) | 
						
							| 46 |  | nd3 | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ¬  ∀ 𝑦 𝑥  ∈  𝑧 ) | 
						
							| 47 | 46 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑦 𝑥  ∈  𝑧  →  ¬  ∃ 𝑥 𝑥  ∈  𝑦 ) ) | 
						
							| 48 | 45 47 | jad | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  ¬  ∃ 𝑥 𝑥  ∈  𝑦 ) ) | 
						
							| 49 | 48 | spsd | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  ¬  ∃ 𝑥 𝑥  ∈  𝑦 ) ) | 
						
							| 50 | 49 | imim1d | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ( ¬  ∃ 𝑥 𝑥  ∈  𝑦  →  𝑦  ∈  𝑥 )  →  ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 51 | 41 50 | alimd | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑦 ( ¬  ∃ 𝑥 𝑥  ∈  𝑦  →  𝑦  ∈  𝑥 )  →  ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 52 | 40 51 | eximd | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∃ 𝑥 ∀ 𝑦 ( ¬  ∃ 𝑥 𝑥  ∈  𝑦  →  𝑦  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 53 | 39 52 | syl5com | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 𝑥  =  𝑧  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 54 |  | axpowndlem2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 55 | 53 54 | pm2.61d | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 56 | 1 55 | nsyl5 | ⊢ ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) |