Step |
Hyp |
Ref |
Expression |
1 |
|
sp |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
2 |
|
p0ex |
⊢ { ∅ } ∈ V |
3 |
|
eleq2 |
⊢ ( 𝑥 = { ∅ } → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ { ∅ } ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑥 = { ∅ } → ( ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ↔ ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) ) ) |
5 |
4
|
albidv |
⊢ ( 𝑥 = { ∅ } → ( ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) ) ) |
6 |
2 5
|
spcev |
⊢ ( ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) → ∃ 𝑥 ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ) |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
7
|
snid |
⊢ ∅ ∈ { ∅ } |
9 |
|
eleq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ∈ { ∅ } ↔ ∅ ∈ { ∅ } ) ) |
10 |
8 9
|
mpbiri |
⊢ ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) |
11 |
6 10
|
mpg |
⊢ ∃ 𝑥 ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) |
12 |
|
neq0 |
⊢ ( ¬ 𝑤 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑤 ) |
13 |
12
|
con1bii |
⊢ ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 ↔ 𝑤 = ∅ ) |
14 |
13
|
imbi1i |
⊢ ( ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ) |
16 |
15
|
exbii |
⊢ ( ∃ 𝑥 ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ) |
17 |
11 16
|
mpbir |
⊢ ∃ 𝑥 ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) |
18 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
19 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
20 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ) |
21 |
|
nfcvd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑤 ) |
22 |
20 21
|
nfeld |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ∈ 𝑤 ) |
23 |
18 22
|
nfexd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 ∃ 𝑥 𝑥 ∈ 𝑤 ) |
24 |
23
|
nfnd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 ¬ ∃ 𝑥 𝑥 ∈ 𝑤 ) |
25 |
21 20
|
nfeld |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
26 |
24 25
|
nfimd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ) |
27 |
|
nfeqf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑤 = 𝑦 ) |
28 |
18 27
|
nfan1 |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) |
29 |
|
elequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) |
30 |
29
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) |
31 |
28 30
|
exbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑥 𝑥 ∈ 𝑤 ↔ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
32 |
31
|
notbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
33 |
|
elequ1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
34 |
33
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
35 |
32 34
|
imbi12d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
36 |
35
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 = 𝑦 → ( ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) ) |
37 |
19 26 36
|
cbvald |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
38 |
18 37
|
exbid |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
39 |
17 38
|
mpbii |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) |
40 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 |
41 |
|
nfae |
⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥 = 𝑧 |
42 |
|
axc11r |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ¬ 𝑥 ∈ 𝑦 → ∀ 𝑥 ¬ 𝑥 ∈ 𝑦 ) ) |
43 |
|
alnex |
⊢ ( ∀ 𝑧 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑧 𝑥 ∈ 𝑦 ) |
44 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) |
45 |
42 43 44
|
3imtr3g |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∃ 𝑧 𝑥 ∈ 𝑦 → ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
46 |
|
nd3 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑦 𝑥 ∈ 𝑧 ) |
47 |
46
|
pm2.21d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑦 𝑥 ∈ 𝑧 → ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
48 |
45 47
|
jad |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
49 |
48
|
spsd |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
50 |
49
|
imim1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) → ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
51 |
41 50
|
alimd |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) → ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
52 |
40 51
|
eximd |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
53 |
39 52
|
syl5com |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
54 |
|
axpowndlem2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
55 |
53 54
|
pm2.61d |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
56 |
1 55
|
nsyl5 |
⊢ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |