Step |
Hyp |
Ref |
Expression |
1 |
|
axpowndlem3 |
⊢ ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
2 |
1
|
ax-gen |
⊢ ∀ 𝑤 ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
3 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 |
4 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 |
5 |
3 4
|
nfan |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
6 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) |
7 |
6
|
adantr |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
8 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) |
9 |
7 8
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 = 𝑤 ) |
10 |
9
|
nfnd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ¬ 𝑥 = 𝑤 ) |
11 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 |
12 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
15 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥 |
16 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 |
17 |
15 16
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
18 |
7 8
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ∈ 𝑤 ) |
19 |
17 18
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑧 𝑥 ∈ 𝑤 ) |
20 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) |
21 |
20
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ) |
22 |
7 21
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ∈ 𝑧 ) |
23 |
14 22
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑤 𝑥 ∈ 𝑧 ) |
24 |
19 23
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ) |
25 |
13 24
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ) |
26 |
8 7
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
27 |
25 26
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
28 |
14 27
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
29 |
13 28
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
30 |
10 29
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ) |
31 |
|
equequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
32 |
31
|
notbid |
⊢ ( 𝑤 = 𝑦 → ( ¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦 ) ) |
33 |
32
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦 ) ) |
34 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) |
35 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑥 𝑦 ) |
36 |
35
|
adantr |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
37 |
34 36
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 = 𝑦 ) |
38 |
13 37
|
nfan1 |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
39 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 ) |
40 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) |
41 |
40
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑦 ) |
42 |
39 41
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑦 ) |
43 |
17 42
|
nfan1 |
⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
44 |
|
elequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) |
45 |
44
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) |
46 |
43 45
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑧 𝑥 ∈ 𝑤 ↔ ∃ 𝑧 𝑥 ∈ 𝑦 ) ) |
47 |
|
biidd |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
48 |
47
|
a1i |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) ) |
49 |
5 22 48
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 𝑥 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
50 |
49
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑤 𝑥 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
51 |
46 50
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
52 |
38 51
|
albid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
53 |
|
elequ1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
54 |
53
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
55 |
52 54
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
56 |
55
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
57 |
5 27 56
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
58 |
13 57
|
exbid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
60 |
33 59
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ↔ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
61 |
60
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ↔ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) ) |
62 |
5 30 61
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
63 |
2 62
|
mpbii |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑦 ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
64 |
63
|
19.21bi |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
65 |
64
|
ex |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |