| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axpowndlem3 | ⊢ ( ¬  𝑥  =  𝑤  →  ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) ) | 
						
							| 2 | 1 | ax-gen | ⊢ ∀ 𝑤 ( ¬  𝑥  =  𝑤  →  ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) ) | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑦 𝑦  =  𝑥 | 
						
							| 4 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 6 |  | nfcvf | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 8 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑤 ) | 
						
							| 9 | 7 8 | nfeqd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑥  =  𝑤 ) | 
						
							| 10 | 9 | nfnd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ¬  𝑥  =  𝑤 ) | 
						
							| 11 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑦 𝑦  =  𝑥 | 
						
							| 12 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑤 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 15 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑦 𝑦  =  𝑥 | 
						
							| 16 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 17 | 15 16 | nfan | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 ) | 
						
							| 18 | 7 8 | nfeld | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑥  ∈  𝑤 ) | 
						
							| 19 | 17 18 | nfexd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ∃ 𝑧 𝑥  ∈  𝑤 ) | 
						
							| 20 |  | nfcvf | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝑧 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑧 ) | 
						
							| 22 | 7 21 | nfeld | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑥  ∈  𝑧 ) | 
						
							| 23 | 14 22 | nfald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ∀ 𝑤 𝑥  ∈  𝑧 ) | 
						
							| 24 | 19 23 | nfimd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 ) ) | 
						
							| 25 | 13 24 | nfald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 ) ) | 
						
							| 26 | 8 7 | nfeld | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 𝑤  ∈  𝑥 ) | 
						
							| 27 | 25 26 | nfimd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) ) | 
						
							| 28 | 14 27 | nfald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) ) | 
						
							| 29 | 13 28 | nfexd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) ) | 
						
							| 30 | 10 29 | nfimd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑦 ( ¬  𝑥  =  𝑤  →  ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) ) ) | 
						
							| 31 |  | equequ2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  =  𝑤  ↔  𝑥  =  𝑦 ) ) | 
						
							| 32 | 31 | notbid | ⊢ ( 𝑤  =  𝑦  →  ( ¬  𝑥  =  𝑤  ↔  ¬  𝑥  =  𝑦 ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ¬  𝑥  =  𝑤  ↔  ¬  𝑥  =  𝑦 ) ) | 
						
							| 34 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 35 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 37 | 34 36 | nfeqd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑥 𝑤  =  𝑦 ) | 
						
							| 38 | 13 37 | nfan1 | ⊢ Ⅎ 𝑥 ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 ) | 
						
							| 39 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑧 𝑤 ) | 
						
							| 40 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 𝑦 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑧 𝑦 ) | 
						
							| 42 | 39 41 | nfeqd | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  Ⅎ 𝑧 𝑤  =  𝑦 ) | 
						
							| 43 | 17 42 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 ) | 
						
							| 44 |  | elequ2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 46 | 43 45 | exbid | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ∃ 𝑧 𝑥  ∈  𝑤  ↔  ∃ 𝑧 𝑥  ∈  𝑦 ) ) | 
						
							| 47 |  | biidd | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  ∈  𝑧  ↔  𝑥  ∈  𝑧 ) ) | 
						
							| 48 | 47 | a1i | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( 𝑤  =  𝑦  →  ( 𝑥  ∈  𝑧  ↔  𝑥  ∈  𝑧 ) ) ) | 
						
							| 49 | 5 22 48 | cbvald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∀ 𝑤 𝑥  ∈  𝑧  ↔  ∀ 𝑦 𝑥  ∈  𝑧 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ∀ 𝑤 𝑥  ∈  𝑧  ↔  ∀ 𝑦 𝑥  ∈  𝑧 ) ) | 
						
							| 51 | 46 50 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  ↔  ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 52 | 38 51 | albid | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  ↔  ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 53 |  | elequ1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( 𝑤  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 55 | 52 54 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 )  ↔  ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 56 | 55 | ex | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( 𝑤  =  𝑦  →  ( ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 )  ↔  ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 57 | 5 27 56 | cbvald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 )  ↔  ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 58 | 13 57 | exbid | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 )  ↔  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 )  ↔  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 60 | 33 59 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  ∧  𝑤  =  𝑦 )  →  ( ( ¬  𝑥  =  𝑤  →  ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) )  ↔  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 61 | 60 | ex | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( 𝑤  =  𝑦  →  ( ( ¬  𝑥  =  𝑤  →  ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) )  ↔  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) ) | 
						
							| 62 | 5 30 61 | cbvald | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ∀ 𝑤 ( ¬  𝑥  =  𝑤  →  ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑤  →  ∀ 𝑤 𝑥  ∈  𝑧 )  →  𝑤  ∈  𝑥 ) )  ↔  ∀ 𝑦 ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 63 | 2 62 | mpbii | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ∀ 𝑦 ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 64 | 63 | 19.21bi | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑥  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 65 | 64 | ex | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ¬  𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) |