Metamath Proof Explorer


Theorem axpr

Description: Unabbreviated version of the Axiom of Pairing of ZF set theory, derived as a theorem from the other axioms.

This theorem should not be referenced by any proof. Instead, use ax-pr below so that the uses of the Axiom of Pairing can be more easily identified.

For a shorter proof using ax-ext , see axprALT . (Contributed by NM, 14-Nov-2006) Remove dependency on ax-ext . (Revised by Rohan Ridenour, 10-Aug-2023) (Proof shortened by BJ, 13-Aug-2023) Use ax-pr instead. (New usage is discouraged.)

Ref Expression
Assertion axpr 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 )

Proof

Step Hyp Ref Expression
1 axprlem3 𝑧𝑤 ( 𝑤𝑧 ↔ ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) )
2 biimpr ( ( 𝑤𝑧 ↔ ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) → ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) )
3 2 alimi ( ∀ 𝑤 ( 𝑤𝑧 ↔ ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) → ∀ 𝑤 ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) )
4 1 3 eximii 𝑧𝑤 ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 )
5 axprlem4 ( ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) ∧ 𝑤 = 𝑥 ) → ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) )
6 axprlem5 ( ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) ∧ 𝑤 = 𝑦 ) → ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) )
7 5 6 jaodan ( ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) ∧ ( 𝑤 = 𝑥𝑤 = 𝑦 ) ) → ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) )
8 7 ex ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) )
9 8 imim1d ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ( ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) → ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) ) )
10 9 alimdv ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ( ∀ 𝑤 ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) → ∀ 𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) ) )
11 10 eximdv ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ( ∃ 𝑧𝑤 ( ∃ 𝑠 ( 𝑠𝑝 ∧ if- ( ∃ 𝑛 𝑛𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) → 𝑤𝑧 ) → ∃ 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) ) )
12 4 11 mpi ( ∀ 𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 ) → ∃ 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) )
13 axprlem2 𝑝𝑠 ( ∀ 𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝 )
14 12 13 exlimiiv 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 )