Step |
Hyp |
Ref |
Expression |
1 |
|
zfpair |
⊢ { 𝑥 , 𝑦 } ∈ V |
2 |
1
|
isseti |
⊢ ∃ 𝑧 𝑧 = { 𝑥 , 𝑦 } |
3 |
|
dfcleq |
⊢ ( 𝑧 = { 𝑥 , 𝑦 } ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) ) |
4 |
|
vex |
⊢ 𝑤 ∈ V |
5 |
4
|
elpr |
⊢ ( 𝑤 ∈ { 𝑥 , 𝑦 } ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) |
6 |
5
|
bibi2i |
⊢ ( ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) ↔ ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) ) |
7 |
|
biimpr |
⊢ ( ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) → ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) |
8 |
6 7
|
sylbi |
⊢ ( ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) → ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) |
9 |
8
|
alimi |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) → ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) |
10 |
3 9
|
sylbi |
⊢ ( 𝑧 = { 𝑥 , 𝑦 } → ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) ) |
11 |
2 10
|
eximii |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) |