Metamath Proof Explorer


Theorem axprALT

Description: Alternate proof of axpr . (Contributed by NM, 14-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion axprALT 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 )

Proof

Step Hyp Ref Expression
1 zfpair { 𝑥 , 𝑦 } ∈ V
2 1 isseti 𝑧 𝑧 = { 𝑥 , 𝑦 }
3 dfcleq ( 𝑧 = { 𝑥 , 𝑦 } ↔ ∀ 𝑤 ( 𝑤𝑧𝑤 ∈ { 𝑥 , 𝑦 } ) )
4 vex 𝑤 ∈ V
5 4 elpr ( 𝑤 ∈ { 𝑥 , 𝑦 } ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) )
6 5 bibi2i ( ( 𝑤𝑧𝑤 ∈ { 𝑥 , 𝑦 } ) ↔ ( 𝑤𝑧 ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) ) )
7 biimpr ( ( 𝑤𝑧 ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) ) → ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) )
8 6 7 sylbi ( ( 𝑤𝑧𝑤 ∈ { 𝑥 , 𝑦 } ) → ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) )
9 8 alimi ( ∀ 𝑤 ( 𝑤𝑧𝑤 ∈ { 𝑥 , 𝑦 } ) → ∀ 𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) )
10 3 9 sylbi ( 𝑧 = { 𝑥 , 𝑦 } → ∀ 𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 ) )
11 2 10 eximii 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 )