Metamath Proof Explorer


Theorem axpre-ltadd

Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd . (Contributed by NM, 11-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axpre-ltadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 elreal ( 𝐴 ∈ ℝ ↔ ∃ 𝑥R𝑥 , 0R ⟩ = 𝐴 )
2 elreal ( 𝐵 ∈ ℝ ↔ ∃ 𝑦R𝑦 , 0R ⟩ = 𝐵 )
3 elreal ( 𝐶 ∈ ℝ ↔ ∃ 𝑧R𝑧 , 0R ⟩ = 𝐶 )
4 breq1 ( ⟨ 𝑥 , 0R ⟩ = 𝐴 → ( ⟨ 𝑥 , 0R ⟩ <𝑦 , 0R ⟩ ↔ 𝐴 <𝑦 , 0R ⟩ ) )
5 oveq2 ( ⟨ 𝑥 , 0R ⟩ = 𝐴 → ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) = ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) )
6 5 breq1d ( ⟨ 𝑥 , 0R ⟩ = 𝐴 → ( ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ↔ ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ) )
7 4 6 bibi12d ( ⟨ 𝑥 , 0R ⟩ = 𝐴 → ( ( ⟨ 𝑥 , 0R ⟩ <𝑦 , 0R ⟩ ↔ ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ) ↔ ( 𝐴 <𝑦 , 0R ⟩ ↔ ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ) ) )
8 breq2 ( ⟨ 𝑦 , 0R ⟩ = 𝐵 → ( 𝐴 <𝑦 , 0R ⟩ ↔ 𝐴 < 𝐵 ) )
9 oveq2 ( ⟨ 𝑦 , 0R ⟩ = 𝐵 → ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) = ( ⟨ 𝑧 , 0R ⟩ + 𝐵 ) )
10 9 breq2d ( ⟨ 𝑦 , 0R ⟩ = 𝐵 → ( ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ↔ ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) < ( ⟨ 𝑧 , 0R ⟩ + 𝐵 ) ) )
11 8 10 bibi12d ( ⟨ 𝑦 , 0R ⟩ = 𝐵 → ( ( 𝐴 <𝑦 , 0R ⟩ ↔ ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ) ↔ ( 𝐴 < 𝐵 ↔ ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) < ( ⟨ 𝑧 , 0R ⟩ + 𝐵 ) ) ) )
12 oveq1 ( ⟨ 𝑧 , 0R ⟩ = 𝐶 → ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) = ( 𝐶 + 𝐴 ) )
13 oveq1 ( ⟨ 𝑧 , 0R ⟩ = 𝐶 → ( ⟨ 𝑧 , 0R ⟩ + 𝐵 ) = ( 𝐶 + 𝐵 ) )
14 12 13 breq12d ( ⟨ 𝑧 , 0R ⟩ = 𝐶 → ( ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) < ( ⟨ 𝑧 , 0R ⟩ + 𝐵 ) ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) )
15 14 bibi2d ( ⟨ 𝑧 , 0R ⟩ = 𝐶 → ( ( 𝐴 < 𝐵 ↔ ( ⟨ 𝑧 , 0R ⟩ + 𝐴 ) < ( ⟨ 𝑧 , 0R ⟩ + 𝐵 ) ) ↔ ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) )
16 ltasr ( 𝑧R → ( 𝑥 <R 𝑦 ↔ ( 𝑧 +R 𝑥 ) <R ( 𝑧 +R 𝑦 ) ) )
17 16 adantr ( ( 𝑧R ∧ ( 𝑥R𝑦R ) ) → ( 𝑥 <R 𝑦 ↔ ( 𝑧 +R 𝑥 ) <R ( 𝑧 +R 𝑦 ) ) )
18 ltresr ( ⟨ 𝑥 , 0R ⟩ <𝑦 , 0R ⟩ ↔ 𝑥 <R 𝑦 )
19 18 a1i ( ( 𝑧R ∧ ( 𝑥R𝑦R ) ) → ( ⟨ 𝑥 , 0R ⟩ <𝑦 , 0R ⟩ ↔ 𝑥 <R 𝑦 ) )
20 addresr ( ( 𝑧R𝑥R ) → ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) = ⟨ ( 𝑧 +R 𝑥 ) , 0R ⟩ )
21 addresr ( ( 𝑧R𝑦R ) → ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) = ⟨ ( 𝑧 +R 𝑦 ) , 0R ⟩ )
22 20 21 breqan12d ( ( ( 𝑧R𝑥R ) ∧ ( 𝑧R𝑦R ) ) → ( ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ↔ ⟨ ( 𝑧 +R 𝑥 ) , 0R ⟩ < ⟨ ( 𝑧 +R 𝑦 ) , 0R ⟩ ) )
23 22 anandis ( ( 𝑧R ∧ ( 𝑥R𝑦R ) ) → ( ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ↔ ⟨ ( 𝑧 +R 𝑥 ) , 0R ⟩ < ⟨ ( 𝑧 +R 𝑦 ) , 0R ⟩ ) )
24 ltresr ( ⟨ ( 𝑧 +R 𝑥 ) , 0R ⟩ < ⟨ ( 𝑧 +R 𝑦 ) , 0R ⟩ ↔ ( 𝑧 +R 𝑥 ) <R ( 𝑧 +R 𝑦 ) )
25 23 24 bitrdi ( ( 𝑧R ∧ ( 𝑥R𝑦R ) ) → ( ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ↔ ( 𝑧 +R 𝑥 ) <R ( 𝑧 +R 𝑦 ) ) )
26 17 19 25 3bitr4d ( ( 𝑧R ∧ ( 𝑥R𝑦R ) ) → ( ⟨ 𝑥 , 0R ⟩ <𝑦 , 0R ⟩ ↔ ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ) )
27 26 ancoms ( ( ( 𝑥R𝑦R ) ∧ 𝑧R ) → ( ⟨ 𝑥 , 0R ⟩ <𝑦 , 0R ⟩ ↔ ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ) )
28 27 3impa ( ( 𝑥R𝑦R𝑧R ) → ( ⟨ 𝑥 , 0R ⟩ <𝑦 , 0R ⟩ ↔ ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑥 , 0R ⟩ ) < ( ⟨ 𝑧 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ) )
29 1 2 3 7 11 15 28 3gencl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) )
30 29 biimpd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) )