Metamath Proof Explorer


Theorem axprlem1

Description: Lemma for axpr . There exists a set to which all empty sets belong. (Contributed by Rohan Ridenour, 10-Aug-2023) (Revised by BJ, 13-Aug-2023)

Ref Expression
Assertion axprlem1 𝑥𝑦 ( ∀ 𝑧 ¬ 𝑧𝑦𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 ax-pow 𝑥𝑦 ( ∀ 𝑧 ( 𝑧𝑦𝑧𝑤 ) → 𝑦𝑥 )
2 pm2.21 ( ¬ 𝑧𝑦 → ( 𝑧𝑦𝑧𝑤 ) )
3 2 alimi ( ∀ 𝑧 ¬ 𝑧𝑦 → ∀ 𝑧 ( 𝑧𝑦𝑧𝑤 ) )
4 3 a1i ( ∀ 𝑧 ¬ 𝑧𝑤 → ( ∀ 𝑧 ¬ 𝑧𝑦 → ∀ 𝑧 ( 𝑧𝑦𝑧𝑤 ) ) )
5 4 imim1d ( ∀ 𝑧 ¬ 𝑧𝑤 → ( ( ∀ 𝑧 ( 𝑧𝑦𝑧𝑤 ) → 𝑦𝑥 ) → ( ∀ 𝑧 ¬ 𝑧𝑦𝑦𝑥 ) ) )
6 5 alimdv ( ∀ 𝑧 ¬ 𝑧𝑤 → ( ∀ 𝑦 ( ∀ 𝑧 ( 𝑧𝑦𝑧𝑤 ) → 𝑦𝑥 ) → ∀ 𝑦 ( ∀ 𝑧 ¬ 𝑧𝑦𝑦𝑥 ) ) )
7 6 eximdv ( ∀ 𝑧 ¬ 𝑧𝑤 → ( ∃ 𝑥𝑦 ( ∀ 𝑧 ( 𝑧𝑦𝑧𝑤 ) → 𝑦𝑥 ) → ∃ 𝑥𝑦 ( ∀ 𝑧 ¬ 𝑧𝑦𝑦𝑥 ) ) )
8 1 7 mpi ( ∀ 𝑧 ¬ 𝑧𝑤 → ∃ 𝑥𝑦 ( ∀ 𝑧 ¬ 𝑧𝑦𝑦𝑥 ) )
9 ax-nul 𝑤𝑧 ¬ 𝑧𝑤
10 8 9 exlimiiv 𝑥𝑦 ( ∀ 𝑧 ¬ 𝑧𝑦𝑦𝑥 )