Step |
Hyp |
Ref |
Expression |
1 |
|
ax-pow |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) → 𝑦 ∈ 𝑥 ) |
2 |
|
pm2.21 |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
3 |
2
|
alimi |
⊢ ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 → ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
4 |
3
|
a1i |
⊢ ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑤 → ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 → ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
5 |
4
|
imim1d |
⊢ ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑤 → ( ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) → 𝑦 ∈ 𝑥 ) → ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
6 |
5
|
alimdv |
⊢ ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑤 → ( ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑦 ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
7 |
6
|
eximdv |
⊢ ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑤 → ( ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) → 𝑦 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
8 |
1 7
|
mpi |
⊢ ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) |
9 |
|
ax-nul |
⊢ ∃ 𝑤 ∀ 𝑧 ¬ 𝑧 ∈ 𝑤 |
10 |
8 9
|
exlimiiv |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) |