Step |
Hyp |
Ref |
Expression |
1 |
|
ax-pow |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑥 ) |
2 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 ) ) |
3 |
|
imim2 |
⊢ ( ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ( 𝑧 ∈ 𝑦 → ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 ) → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) ) ) |
4 |
3
|
al2imi |
⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) ) ) |
5 |
2 4
|
syl5bi |
⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) ) ) |
6 |
5
|
imim1d |
⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑥 ) → ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) ) |
7 |
6
|
alimdv |
⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑥 ) → ∀ 𝑦 ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) ) |
8 |
7
|
eximdv |
⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ( ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) ) |
9 |
1 8
|
mpi |
⊢ ( ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) |
10 |
|
axprlem1 |
⊢ ∃ 𝑣 ∀ 𝑧 ( ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑧 ∈ 𝑣 ) |
11 |
9 10
|
exlimiiv |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) |