Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑧 if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) |
2 |
1
|
axrep4 |
⊢ ( ∀ 𝑠 ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) → ∃ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
3 |
|
ax6evr |
⊢ ∃ 𝑧 𝑥 = 𝑧 |
4 |
|
ifptru |
⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑥 ) ) |
5 |
4
|
biimpd |
⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑥 ) ) |
6 |
|
equtrr |
⊢ ( 𝑥 = 𝑧 → ( 𝑤 = 𝑥 → 𝑤 = 𝑧 ) ) |
7 |
5 6
|
sylan9r |
⊢ ( ( 𝑥 = 𝑧 ∧ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
8 |
7
|
alrimiv |
⊢ ( ( 𝑥 = 𝑧 ∧ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
9 |
8
|
expcom |
⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ( 𝑥 = 𝑧 → ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) ) |
10 |
9
|
eximdv |
⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ( ∃ 𝑧 𝑥 = 𝑧 → ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) ) |
11 |
3 10
|
mpi |
⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
12 |
|
ax6evr |
⊢ ∃ 𝑧 𝑦 = 𝑧 |
13 |
|
ifpfal |
⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑦 ) ) |
14 |
13
|
biimpd |
⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑦 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑦 = 𝑧 ∧ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑦 ) ) |
16 |
|
simpl |
⊢ ( ( 𝑦 = 𝑧 ∧ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) → 𝑦 = 𝑧 ) |
17 |
|
equtr |
⊢ ( 𝑤 = 𝑦 → ( 𝑦 = 𝑧 → 𝑤 = 𝑧 ) ) |
18 |
15 16 17
|
syl6ci |
⊢ ( ( 𝑦 = 𝑧 ∧ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
19 |
18
|
alrimiv |
⊢ ( ( 𝑦 = 𝑧 ∧ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
20 |
19
|
expcom |
⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( 𝑦 = 𝑧 → ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) ) |
21 |
20
|
eximdv |
⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( ∃ 𝑧 𝑦 = 𝑧 → ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) ) |
22 |
12 21
|
mpi |
⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
23 |
11 22
|
pm2.61i |
⊢ ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) |
24 |
2 23
|
mpg |
⊢ ∃ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |