Step |
Hyp |
Ref |
Expression |
1 |
|
axprlem4.1 |
⊢ ∃ 𝑠 ∀ 𝑛 𝜑 |
2 |
|
axprlem4.2 |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
3 |
|
axprlem4.3 |
⊢ ( ∀ 𝑛 𝜑 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑣 ) ) |
4 |
2
|
alimi |
⊢ ( ∀ 𝑛 𝜑 → ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
5 |
|
df-ral |
⊢ ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ↔ ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
6 |
4 5
|
sylibr |
⊢ ( ∀ 𝑛 𝜑 → ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) |
7 |
6
|
imim1i |
⊢ ( ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ∀ 𝑛 𝜑 → 𝑠 ∈ 𝑝 ) ) |
8 |
7
|
ancrd |
⊢ ( ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ∀ 𝑛 𝜑 → ( 𝑠 ∈ 𝑝 ∧ ∀ 𝑛 𝜑 ) ) ) |
9 |
8
|
aleximi |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ∃ 𝑠 ∀ 𝑛 𝜑 → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ ∀ 𝑛 𝜑 ) ) ) |
10 |
1 9
|
mpi |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ ∀ 𝑛 𝜑 ) ) |
11 |
3
|
biimprcd |
⊢ ( 𝑤 = 𝑣 → ( ∀ 𝑛 𝜑 → if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
12 |
11
|
anim2d |
⊢ ( 𝑤 = 𝑣 → ( ( 𝑠 ∈ 𝑝 ∧ ∀ 𝑛 𝜑 ) → ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
13 |
12
|
eximdv |
⊢ ( 𝑤 = 𝑣 → ( ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ ∀ 𝑛 𝜑 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
14 |
10 13
|
syl5com |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( 𝑤 = 𝑣 → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |