| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-nul |
⊢ ∃ 𝑠 ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 |
| 2 |
|
nfa1 |
⊢ Ⅎ 𝑠 ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑠 𝑤 = 𝑦 |
| 4 |
2 3
|
nfan |
⊢ Ⅎ 𝑠 ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) |
| 5 |
|
pm2.21 |
⊢ ( ¬ 𝑛 ∈ 𝑠 → ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
| 6 |
5
|
alimi |
⊢ ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 → ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
| 8 |
|
df-ral |
⊢ ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ↔ ∀ 𝑛 ( 𝑛 ∈ 𝑠 → ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) ) |
| 9 |
7 8
|
sylibr |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 ) |
| 10 |
|
sp |
⊢ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) → ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ) |
| 11 |
10
|
ad2antrl |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ) |
| 12 |
9 11
|
mpd |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → 𝑠 ∈ 𝑝 ) |
| 13 |
|
simpl |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ) |
| 14 |
|
alnex |
⊢ ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ↔ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) |
| 15 |
13 14
|
sylib |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) |
| 16 |
|
simprr |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → 𝑤 = 𝑦 ) |
| 17 |
|
ifpfal |
⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑦 ) ) |
| 18 |
17
|
biimpar |
⊢ ( ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ∧ 𝑤 = 𝑦 ) → if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) |
| 19 |
15 16 18
|
syl2anc |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) |
| 20 |
12 19
|
jca |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 ∧ ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) ) → ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
| 21 |
20
|
expcom |
⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 → ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
| 22 |
4 21
|
eximd |
⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑠 ∀ 𝑛 ¬ 𝑛 ∈ 𝑠 → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
| 23 |
1 22
|
mpi |
⊢ ( ( ∀ 𝑠 ( ∀ 𝑛 ∈ 𝑠 ∀ 𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝 ) ∧ 𝑤 = 𝑦 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |