Step |
Hyp |
Ref |
Expression |
1 |
|
pwidg |
⊢ ( 𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 ) |
2 |
|
pweq |
⊢ ( 𝑥 = 𝒫 𝐴 → 𝒫 𝑥 = 𝒫 𝒫 𝐴 ) |
3 |
2
|
eleq2d |
⊢ ( 𝑥 = 𝒫 𝐴 → ( 𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 ) ) |
4 |
3
|
spcegv |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 → ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 ) ) |
5 |
1 4
|
mpd |
⊢ ( 𝒫 𝐴 ∈ V → ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 ) |
6 |
|
elex |
⊢ ( 𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V ) |
7 |
6
|
exlimiv |
⊢ ( ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V ) |
8 |
5 7
|
impbii |
⊢ ( 𝒫 𝐴 ∈ V ↔ ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 ) |
9 |
|
vex |
⊢ 𝑥 ∈ V |
10 |
9
|
elpw2 |
⊢ ( 𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ⊆ 𝑥 ) |
11 |
|
pwss |
⊢ ( 𝒫 𝐴 ⊆ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥 ) ) |
12 |
|
dfss2 |
⊢ ( 𝑦 ⊆ 𝐴 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) ) |
13 |
12
|
imbi1i |
⊢ ( ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥 ) ↔ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
14 |
13
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
15 |
11 14
|
bitri |
⊢ ( 𝒫 𝐴 ⊆ 𝑥 ↔ ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
16 |
10 15
|
bitri |
⊢ ( 𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
17 |
16
|
exbii |
⊢ ( ∃ 𝑥 𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |
18 |
8 17
|
bitri |
⊢ ( 𝒫 𝐴 ∈ V ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝑥 ) ) |