Metamath Proof Explorer


Theorem axreg2

Description: Axiom of Regularity expressed more compactly. (Contributed by NM, 14-Aug-2003)

Ref Expression
Assertion axreg2 ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 ax-reg ( ∃ 𝑥 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
2 1 19.23bi ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )