Step |
Hyp |
Ref |
Expression |
1 |
|
axregndlem2 |
⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ) ) |
2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑥 |
3 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑦 |
4 |
2 3
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
5 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥 |
6 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 |
7 |
5 6
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
8 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑥 ) |
9 |
8
|
nfcrd |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) |
10 |
9
|
adantr |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) |
11 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑦 ) |
12 |
11
|
nfcrd |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑤 ∈ 𝑦 ) |
13 |
12
|
nfnd |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 ¬ 𝑤 ∈ 𝑦 ) |
14 |
13
|
adantl |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 ¬ 𝑤 ∈ 𝑦 ) |
15 |
10 14
|
nfimd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ) |
16 |
|
elequ1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
17 |
|
elequ1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) ) |
18 |
17
|
notbid |
⊢ ( 𝑤 = 𝑧 → ( ¬ 𝑤 ∈ 𝑦 ↔ ¬ 𝑧 ∈ 𝑦 ) ) |
19 |
16 18
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
20 |
19
|
a1i |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
21 |
7 15 20
|
cbvald |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
22 |
21
|
anbi2d |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
23 |
4 22
|
exbid |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
24 |
1 23
|
syl5ib |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
25 |
24
|
ex |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
26 |
|
axregndlem1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
27 |
26
|
aecoms |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
28 |
|
19.8a |
⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 𝑥 ∈ 𝑦 ) |
29 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑧 𝑧 = 𝑦 |
30 |
|
elirrv |
⊢ ¬ 𝑧 ∈ 𝑧 |
31 |
|
elequ2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑧 ↔ 𝑧 ∈ 𝑦 ) ) |
32 |
30 31
|
mtbii |
⊢ ( 𝑧 = 𝑦 → ¬ 𝑧 ∈ 𝑦 ) |
33 |
32
|
a1d |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
34 |
33
|
alimi |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
35 |
34
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
36 |
35
|
expcom |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑦 → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
37 |
29 36
|
eximd |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( ∃ 𝑥 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
38 |
28 37
|
syl5 |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
39 |
25 27 38
|
pm2.61ii |
⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |