| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axregndlem2 | ⊢ ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ¬  𝑤  ∈  𝑦 ) ) ) | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑧 𝑧  =  𝑥 | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑧 𝑧  =  𝑦 | 
						
							| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 ) | 
						
							| 5 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑧 𝑧  =  𝑥 | 
						
							| 6 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑧 𝑧  =  𝑦 | 
						
							| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 ) | 
						
							| 8 |  | nfcvf | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 9 | 8 | nfcrd | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  Ⅎ 𝑧 𝑤  ∈  𝑥 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  Ⅎ 𝑧 𝑤  ∈  𝑥 ) | 
						
							| 11 |  | nfcvf | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑦  →  Ⅎ 𝑧 𝑦 ) | 
						
							| 12 | 11 | nfcrd | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑦  →  Ⅎ 𝑧 𝑤  ∈  𝑦 ) | 
						
							| 13 | 12 | nfnd | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑦  →  Ⅎ 𝑧 ¬  𝑤  ∈  𝑦 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  Ⅎ 𝑧 ¬  𝑤  ∈  𝑦 ) | 
						
							| 15 | 10 14 | nfimd | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  Ⅎ 𝑧 ( 𝑤  ∈  𝑥  →  ¬  𝑤  ∈  𝑦 ) ) | 
						
							| 16 |  | elequ1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 17 |  | elequ1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  ∈  𝑦  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 18 | 17 | notbid | ⊢ ( 𝑤  =  𝑧  →  ( ¬  𝑤  ∈  𝑦  ↔  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 19 | 16 18 | imbi12d | ⊢ ( 𝑤  =  𝑧  →  ( ( 𝑤  ∈  𝑥  →  ¬  𝑤  ∈  𝑦 )  ↔  ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 20 | 19 | a1i | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( 𝑤  =  𝑧  →  ( ( 𝑤  ∈  𝑥  →  ¬  𝑤  ∈  𝑦 )  ↔  ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 21 | 7 15 20 | cbvald | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ¬  𝑤  ∈  𝑦 )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 22 | 21 | anbi2d | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ¬  𝑤  ∈  𝑦 ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 23 | 4 22 | exbid | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑤 ( 𝑤  ∈  𝑥  →  ¬  𝑤  ∈  𝑦 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 24 | 1 23 | imbitrid | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  ( ¬  ∀ 𝑧 𝑧  =  𝑦  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) ) | 
						
							| 26 |  | axregndlem1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 27 | 26 | aecoms | ⊢ ( ∀ 𝑧 𝑧  =  𝑥  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 28 |  | 19.8a | ⊢ ( 𝑥  ∈  𝑦  →  ∃ 𝑥 𝑥  ∈  𝑦 ) | 
						
							| 29 |  | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑧 𝑧  =  𝑦 | 
						
							| 30 |  | elirrv | ⊢ ¬  𝑧  ∈  𝑧 | 
						
							| 31 |  | elequ2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  𝑧  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 32 | 30 31 | mtbii | ⊢ ( 𝑧  =  𝑦  →  ¬  𝑧  ∈  𝑦 ) | 
						
							| 33 | 32 | a1d | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 34 | 33 | alimi | ⊢ ( ∀ 𝑧 𝑧  =  𝑦  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 35 | 34 | anim2i | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 𝑧  =  𝑦 )  →  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 36 | 35 | expcom | ⊢ ( ∀ 𝑧 𝑧  =  𝑦  →  ( 𝑥  ∈  𝑦  →  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 37 | 29 36 | eximd | ⊢ ( ∀ 𝑧 𝑧  =  𝑦  →  ( ∃ 𝑥 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 38 | 28 37 | syl5 | ⊢ ( ∀ 𝑧 𝑧  =  𝑦  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 39 | 25 27 38 | pm2.61ii | ⊢ ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) |