| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 19.8a | ⊢ ( 𝑥  ∈  𝑦  →  ∃ 𝑥 𝑥  ∈  𝑦 ) | 
						
							| 2 |  | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 3 |  | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 4 |  | elirrv | ⊢ ¬  𝑥  ∈  𝑥 | 
						
							| 5 |  | elequ1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 6 | 4 5 | mtbii | ⊢ ( 𝑥  =  𝑧  →  ¬  𝑧  ∈  𝑥 ) | 
						
							| 7 | 6 | sps | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ¬  𝑧  ∈  𝑥 ) | 
						
							| 8 | 7 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 9 | 3 8 | alrimi | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 10 | 9 | anim2i | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 11 | 10 | expcom | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( 𝑥  ∈  𝑦  →  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 12 | 2 11 | eximd | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∃ 𝑥 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 13 | 1 12 | syl5 | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) |