Step |
Hyp |
Ref |
Expression |
1 |
|
19.8a |
⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 𝑥 ∈ 𝑦 ) |
2 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 |
3 |
|
nfae |
⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥 = 𝑧 |
4 |
|
elirrv |
⊢ ¬ 𝑥 ∈ 𝑥 |
5 |
|
elequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
6 |
4 5
|
mtbii |
⊢ ( 𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥 ) |
7 |
6
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥 ) |
8 |
7
|
pm2.21d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
9 |
3 8
|
alrimi |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
10 |
9
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
11 |
10
|
expcom |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
12 |
2 11
|
eximd |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
13 |
1 12
|
syl5 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |