Metamath Proof Explorer


Theorem axregndlem1

Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axregndlem1 ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 19.8a ( 𝑥𝑦 → ∃ 𝑥 𝑥𝑦 )
2 nfae 𝑥𝑥 𝑥 = 𝑧
3 nfae 𝑧𝑥 𝑥 = 𝑧
4 elirrv ¬ 𝑥𝑥
5 elequ1 ( 𝑥 = 𝑧 → ( 𝑥𝑥𝑧𝑥 ) )
6 4 5 mtbii ( 𝑥 = 𝑧 → ¬ 𝑧𝑥 )
7 6 sps ( ∀ 𝑥 𝑥 = 𝑧 → ¬ 𝑧𝑥 )
8 7 pm2.21d ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑧𝑥 → ¬ 𝑧𝑦 ) )
9 3 8 alrimi ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) )
10 9 anim2i ( ( 𝑥𝑦 ∧ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
11 10 expcom ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥𝑦 → ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
12 2 11 eximd ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
13 1 12 syl5 ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )