Step |
Hyp |
Ref |
Expression |
1 |
|
axreg2 |
⊢ ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
2 |
1
|
ax-gen |
⊢ ∀ 𝑤 ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
3 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
4 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 |
5 |
3 4
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
6 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) |
7 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
8 |
7
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
9 |
6 8
|
nfeld |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑦 ) |
10 |
|
nfv |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
11 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 |
12 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
14 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) |
15 |
14
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ) |
16 |
15 6
|
nfeld |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ∈ 𝑤 ) |
17 |
15 8
|
nfeld |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ∈ 𝑦 ) |
18 |
17
|
nfnd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ¬ 𝑧 ∈ 𝑦 ) |
19 |
16 18
|
nfimd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) |
20 |
13 19
|
nfald |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) |
21 |
9 20
|
nfand |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
22 |
10 21
|
nfexd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
23 |
9 22
|
nfimd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
24 |
|
simpr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → 𝑤 = 𝑥 ) |
25 |
24
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
26 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑤 ) |
27 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑧 𝑥 ) |
28 |
27
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑥 ) |
29 |
26 28
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑥 ) |
30 |
13 29
|
nfan1 |
⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) |
31 |
24
|
eleq2d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥 ) ) |
32 |
31
|
imbi1d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
33 |
30 32
|
albid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
34 |
25 33
|
anbi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
35 |
34
|
ex |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
36 |
5 21 35
|
cbvexd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
38 |
25 37
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
39 |
38
|
ex |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) ) |
40 |
5 23 39
|
cbvald |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
41 |
2 40
|
mpbii |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
42 |
41
|
19.21bi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
43 |
42
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
44 |
|
elirrv |
⊢ ¬ 𝑥 ∈ 𝑥 |
45 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦 ) ) |
46 |
44 45
|
mtbii |
⊢ ( 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦 ) |
47 |
46
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦 ) |
48 |
47
|
pm2.21d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
49 |
|
axregndlem1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
50 |
43 48 49
|
pm2.61ii |
⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |