Metamath Proof Explorer


Theorem axregndlem2

Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (Proof shortened by Mario Carneiro, 10-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion axregndlem2 ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 axreg2 ( 𝑤𝑦 → ∃ 𝑤 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) )
2 1 ax-gen 𝑤 ( 𝑤𝑦 → ∃ 𝑤 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) )
3 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
4 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧
5 3 4 nfan 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 )
6 nfcvd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑥 𝑤 )
7 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝑦 )
8 7 adantr ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑥 𝑦 )
9 6 8 nfeld ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤𝑦 )
10 nfv 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 )
11 nfnae 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦
12 nfnae 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧
13 11 12 nfan 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 )
14 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑧 𝑥 𝑧 )
15 14 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑥 𝑧 )
16 15 6 nfeld ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧𝑤 )
17 15 8 nfeld ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧𝑦 )
18 17 nfnd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ¬ 𝑧𝑦 )
19 16 18 nfimd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) )
20 13 19 nfald ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) )
21 9 20 nfand ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) )
22 10 21 nfexd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥𝑤 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) )
23 9 22 nfimd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑤𝑦 → ∃ 𝑤 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) ) )
24 simpr ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → 𝑤 = 𝑥 )
25 24 eleq1d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑤𝑦𝑥𝑦 ) )
26 nfcvd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑧 𝑤 )
27 nfcvf2 ( ¬ ∀ 𝑥 𝑥 = 𝑧 𝑧 𝑥 )
28 27 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑧 𝑥 )
29 26 28 nfeqd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑥 )
30 13 29 nfan1 𝑧 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 )
31 24 eleq2d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑧𝑤𝑧𝑥 ) )
32 31 imbi1d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ↔ ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
33 30 32 albid ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ↔ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
34 25 33 anbi12d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
35 34 ex ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) ) )
36 5 21 35 cbvexd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
37 36 adantr ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑤 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
38 25 37 imbi12d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑤𝑦 → ∃ 𝑤 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) ) ↔ ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) ) )
39 38 ex ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑤𝑦 → ∃ 𝑤 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) ) ↔ ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) ) ) )
40 5 23 39 cbvald ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑤 ( 𝑤𝑦 → ∃ 𝑤 ( 𝑤𝑦 ∧ ∀ 𝑧 ( 𝑧𝑤 → ¬ 𝑧𝑦 ) ) ) ↔ ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) ) )
41 2 40 mpbii ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∀ 𝑥 ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
42 41 19.21bi ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
43 42 ex ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) ) )
44 elirrv ¬ 𝑥𝑥
45 elequ2 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑥𝑦 ) )
46 44 45 mtbii ( 𝑥 = 𝑦 → ¬ 𝑥𝑦 )
47 46 sps ( ∀ 𝑥 𝑥 = 𝑦 → ¬ 𝑥𝑦 )
48 47 pm2.21d ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
49 axregndlem1 ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
50 43 48 49 pm2.61ii ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )