| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) |
| 2 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝑥 |
| 3 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝑤 |
| 4 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 𝜑 |
| 5 |
3 4
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) |
| 6 |
5
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) |
| 7 |
2 6
|
nfbi |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) |
| 8 |
7
|
nfal |
⊢ Ⅎ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) |
| 9 |
1 8
|
nfim |
⊢ Ⅎ 𝑦 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 10 |
9
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 11 |
|
axreplem |
⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 12 |
|
axrep2 |
⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 13 |
10 11 12
|
chvarfv |
⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) |