| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axrep5.1 |
⊢ Ⅎ 𝑧 𝜑 |
| 2 |
|
19.37v |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑤 → ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑤 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ) |
| 3 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) → 𝑦 = 𝑧 ) ↔ ( 𝑥 ∈ 𝑤 → ( 𝜑 → 𝑦 = 𝑧 ) ) ) |
| 4 |
3
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑦 ( 𝑥 ∈ 𝑤 → ( 𝜑 → 𝑦 = 𝑧 ) ) ) |
| 5 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝑤 → ( 𝜑 → 𝑦 = 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑤 → ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ) |
| 6 |
4 5
|
bitr2i |
⊢ ( ( 𝑥 ∈ 𝑤 → ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ↔ ∀ 𝑦 ( ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) → 𝑦 = 𝑧 ) ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑤 → ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ↔ ∃ 𝑧 ∀ 𝑦 ( ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) → 𝑦 = 𝑧 ) ) |
| 8 |
2 7
|
bitr3i |
⊢ ( ( 𝑥 ∈ 𝑤 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ↔ ∃ 𝑧 ∀ 𝑦 ( ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) → 𝑦 = 𝑧 ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑤 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ↔ ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) → 𝑦 = 𝑧 ) ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 ∈ 𝑤 |
| 11 |
10 1
|
nfan |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) |
| 12 |
11
|
axrep4 |
⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) → 𝑦 = 𝑧 ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ) |
| 13 |
9 12
|
sylbi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑤 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ) |
| 14 |
|
anabs5 |
⊢ ( ( 𝑥 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 15 |
14
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 16 |
15
|
bibi2i |
⊢ ( ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ↔ ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 17 |
16
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 18 |
17
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 19 |
13 18
|
sylib |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑤 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |