Metamath Proof Explorer


Theorem axrep6

Description: A condensed form of ax-rep . (Contributed by SN, 18-Sep-2023)

Ref Expression
Assertion axrep6 ( ∀ 𝑤 ∃* 𝑧 𝜑 → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-rep ( ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
2 df-mo ( ∃* 𝑧 𝜑 ↔ ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) )
3 19.3v ( ∀ 𝑦 𝜑𝜑 )
4 3 imbi1i ( ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) ↔ ( 𝜑𝑧 = 𝑦 ) )
5 4 albii ( ∀ 𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) )
6 5 exbii ( ∃ 𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) ↔ ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) )
7 2 6 bitr4i ( ∃* 𝑧 𝜑 ↔ ∃ 𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) )
8 7 albii ( ∀ 𝑤 ∃* 𝑧 𝜑 ↔ ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) )
9 3 rexbii ( ∃ 𝑤𝑥𝑦 𝜑 ↔ ∃ 𝑤𝑥 𝜑 )
10 df-rex ( ∃ 𝑤𝑥𝑦 𝜑 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) )
11 9 10 bitr3i ( ∃ 𝑤𝑥 𝜑 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) )
12 11 bibi2i ( ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) ↔ ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
13 12 albii ( ∀ 𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) ↔ ∀ 𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
14 13 exbii ( ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) ↔ ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
15 1 8 14 3imtr4i ( ∀ 𝑤 ∃* 𝑧 𝜑 → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) )