| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-rep |
⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 2 |
|
df-mo |
⊢ ( ∃* 𝑧 𝜑 ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 3 |
|
19.3v |
⊢ ( ∀ 𝑦 𝜑 ↔ 𝜑 ) |
| 4 |
3
|
imbi1i |
⊢ ( ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 5 |
4
|
albii |
⊢ ( ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 7 |
2 6
|
bitr4i |
⊢ ( ∃* 𝑧 𝜑 ↔ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑 ↔ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ) |
| 9 |
3
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝑥 ∀ 𝑦 𝜑 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) |
| 10 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ 𝑥 ∀ 𝑦 𝜑 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 11 |
9 10
|
bitr3i |
⊢ ( ∃ 𝑤 ∈ 𝑥 𝜑 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 12 |
11
|
bibi2i |
⊢ ( ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ↔ ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 13 |
12
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 14 |
13
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 15 |
1 8 14
|
3imtr4i |
⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑 → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ) |