| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axrepndlem2 |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 3 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 |
| 4 |
2 3
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 5 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 6 |
4 5
|
nfan |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 7 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 8 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 |
| 9 |
7 8
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 10 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 11 |
9 10
|
nfan |
⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 12 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) |
| 13 |
12
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ) |
| 14 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
| 16 |
13 15
|
nfeld |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ∈ 𝑥 ) |
| 17 |
16
|
nf5rd |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) |
| 18 |
|
sp |
⊢ ( ∀ 𝑦 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) |
| 19 |
17 18
|
impbid1 |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑧 ∈ 𝑥 ↔ ∀ 𝑦 𝑧 ∈ 𝑥 ) ) |
| 20 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑧 𝑥 ) |
| 21 |
20
|
ad2antlr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑥 ) |
| 22 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) |
| 23 |
22
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑦 ) |
| 24 |
21 23
|
nfeld |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑥 ∈ 𝑦 ) |
| 25 |
24
|
nf5rd |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑥 ∈ 𝑦 → ∀ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 26 |
|
sp |
⊢ ( ∀ 𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦 ) |
| 27 |
25 26
|
impbid1 |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑥 ∈ 𝑦 ↔ ∀ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 28 |
27
|
anbi1d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 29 |
6 28
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 30 |
19 29
|
bibi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 31 |
11 30
|
albid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 33 |
6 32
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 34 |
1 33
|
mpbid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 35 |
34
|
exp31 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) ) |
| 36 |
|
nfae |
⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥 = 𝑦 |
| 37 |
|
nd2 |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑦 𝑧 ∈ 𝑥 ) |
| 38 |
37
|
aecoms |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑦 𝑧 ∈ 𝑥 ) |
| 39 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑦 |
| 40 |
|
nd3 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |
| 41 |
40
|
intnanrd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 42 |
39 41
|
nexd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 43 |
38 42
|
2falsed |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 44 |
36 43
|
alrimi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 45 |
44
|
a1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 46 |
45
|
19.8ad |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 47 |
|
nfae |
⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥 = 𝑧 |
| 48 |
|
nd4 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑦 𝑧 ∈ 𝑥 ) |
| 49 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 |
| 50 |
|
nd1 |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |
| 51 |
50
|
aecoms |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |
| 52 |
51
|
intnanrd |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 53 |
49 52
|
nexd |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 54 |
48 53
|
2falsed |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 55 |
47 54
|
alrimi |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 56 |
55
|
a1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 57 |
56
|
19.8ad |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 58 |
|
nfae |
⊢ Ⅎ 𝑧 ∀ 𝑦 𝑦 = 𝑧 |
| 59 |
|
nd1 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑦 𝑧 ∈ 𝑥 ) |
| 60 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑦 𝑦 = 𝑧 |
| 61 |
|
nd2 |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |
| 62 |
61
|
aecoms |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |
| 63 |
62
|
intnanrd |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 64 |
60 63
|
nexd |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 65 |
59 64
|
2falsed |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 66 |
58 65
|
alrimi |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 67 |
66
|
a1d |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 68 |
67
|
19.8ad |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 69 |
35 46 57 68
|
pm2.61iii |
⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |