Step |
Hyp |
Ref |
Expression |
1 |
|
axrep6 |
⊢ ( ∀ 𝑤 ∃* 𝑥 ( 𝑤 = 𝑥 ∧ 𝜑 ) → ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ) |
2 |
|
euequ |
⊢ ∃! 𝑥 𝑥 = 𝑤 |
3 |
2
|
eumoi |
⊢ ∃* 𝑥 𝑥 = 𝑤 |
4 |
|
equcomi |
⊢ ( 𝑤 = 𝑥 → 𝑥 = 𝑤 ) |
5 |
4
|
adantr |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝜑 ) → 𝑥 = 𝑤 ) |
6 |
5
|
moimi |
⊢ ( ∃* 𝑥 𝑥 = 𝑤 → ∃* 𝑥 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) |
7 |
3 6
|
ax-mp |
⊢ ∃* 𝑥 ( 𝑤 = 𝑥 ∧ 𝜑 ) |
8 |
1 7
|
mpg |
⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) |
9 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ) |
10 |
|
an12 |
⊢ ( ( 𝑤 = 𝑥 ∧ ( 𝑤 ∈ 𝑧 ∧ 𝜑 ) ) ↔ ( 𝑤 ∈ 𝑧 ∧ ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑤 ( 𝑤 = 𝑥 ∧ ( 𝑤 ∈ 𝑧 ∧ 𝜑 ) ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ) |
12 |
|
elequ1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
13 |
12
|
anbi1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑧 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
14 |
13
|
equsexvw |
⊢ ( ∃ 𝑤 ( 𝑤 = 𝑥 ∧ ( 𝑤 ∈ 𝑧 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
15 |
9 11 14
|
3bitr2i |
⊢ ( ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
16 |
15
|
bibi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
17 |
16
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
18 |
17
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑤 = 𝑥 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
19 |
8 18
|
mpbi |
⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |