Metamath Proof Explorer


Theorem axsepgfromrep

Description: A more general version axsepg of the axiom scheme of separation ax-sep derived from the axiom scheme of replacement ax-rep (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on z , ph (that is, variable z may occur in formula ph ). See linked statements for more information. (Contributed by NM, 11-Sep-2006) Remove dependencies on ax-9 to ax-13 . (Revised by SN, 25-Sep-2023) Use ax-sep instead (or axsepg if the extra generality is needed). (New usage is discouraged.)

Ref Expression
Assertion axsepgfromrep 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) )

Proof

Step Hyp Ref Expression
1 axrep6 ( ∀ 𝑤 ∃* 𝑥 ( 𝑤 = 𝑥𝜑 ) → ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ∃ 𝑤𝑧 ( 𝑤 = 𝑥𝜑 ) ) )
2 euequ ∃! 𝑥 𝑥 = 𝑤
3 2 eumoi ∃* 𝑥 𝑥 = 𝑤
4 equcomi ( 𝑤 = 𝑥𝑥 = 𝑤 )
5 4 adantr ( ( 𝑤 = 𝑥𝜑 ) → 𝑥 = 𝑤 )
6 5 moimi ( ∃* 𝑥 𝑥 = 𝑤 → ∃* 𝑥 ( 𝑤 = 𝑥𝜑 ) )
7 3 6 ax-mp ∃* 𝑥 ( 𝑤 = 𝑥𝜑 )
8 1 7 mpg 𝑦𝑥 ( 𝑥𝑦 ↔ ∃ 𝑤𝑧 ( 𝑤 = 𝑥𝜑 ) )
9 df-rex ( ∃ 𝑤𝑧 ( 𝑤 = 𝑥𝜑 ) ↔ ∃ 𝑤 ( 𝑤𝑧 ∧ ( 𝑤 = 𝑥𝜑 ) ) )
10 an12 ( ( 𝑤 = 𝑥 ∧ ( 𝑤𝑧𝜑 ) ) ↔ ( 𝑤𝑧 ∧ ( 𝑤 = 𝑥𝜑 ) ) )
11 10 exbii ( ∃ 𝑤 ( 𝑤 = 𝑥 ∧ ( 𝑤𝑧𝜑 ) ) ↔ ∃ 𝑤 ( 𝑤𝑧 ∧ ( 𝑤 = 𝑥𝜑 ) ) )
12 elequ1 ( 𝑤 = 𝑥 → ( 𝑤𝑧𝑥𝑧 ) )
13 12 anbi1d ( 𝑤 = 𝑥 → ( ( 𝑤𝑧𝜑 ) ↔ ( 𝑥𝑧𝜑 ) ) )
14 13 equsexvw ( ∃ 𝑤 ( 𝑤 = 𝑥 ∧ ( 𝑤𝑧𝜑 ) ) ↔ ( 𝑥𝑧𝜑 ) )
15 9 11 14 3bitr2i ( ∃ 𝑤𝑧 ( 𝑤 = 𝑥𝜑 ) ↔ ( 𝑥𝑧𝜑 ) )
16 15 bibi2i ( ( 𝑥𝑦 ↔ ∃ 𝑤𝑧 ( 𝑤 = 𝑥𝜑 ) ) ↔ ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) )
17 16 albii ( ∀ 𝑥 ( 𝑥𝑦 ↔ ∃ 𝑤𝑧 ( 𝑤 = 𝑥𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) )
18 17 exbii ( ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ∃ 𝑤𝑧 ( 𝑤 = 𝑥𝜑 ) ) ↔ ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) )
19 8 18 mpbi 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) )