Step |
Hyp |
Ref |
Expression |
1 |
|
ax-pre-sup |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) |
2 |
1
|
3expia |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) ) |
3 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
4 |
|
ltxrlt |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) |
5 |
3 4
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) |
6 |
5
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) |
7 |
6
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ) ) |
8 |
7
|
rexbidva |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ) ) |
10 |
|
ltxrlt |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦 ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦 ) ) |
12 |
3 11
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦 ) ) |
13 |
12
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦 ) ) |
14 |
13
|
notbid |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 <ℝ 𝑦 ) ) |
15 |
14
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ) ) |
16 |
4
|
ancoms |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) |
17 |
16
|
adantll |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) |
18 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
19 |
|
ltxrlt |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧 ) ) |
20 |
19
|
ancoms |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧 ) ) |
21 |
18 20
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧 ) ) |
22 |
21
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧 ) ) |
23 |
22
|
rexbidva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) |
24 |
23
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) |
25 |
17 24
|
imbi12d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) |
26 |
25
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) |
27 |
15 26
|
anbi12d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) ) |
28 |
27
|
rexbidva |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) ) |
30 |
2 9 29
|
3imtr4d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
31 |
30
|
3impia |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |