Step |
Hyp |
Ref |
Expression |
1 |
|
axtrkg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
axtrkg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
axtrkg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
axtrkg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
axtgbtwnid.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
6 |
|
axtgbtwnid.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
7 |
|
axtgbtwnid.3 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) ) |
8 |
|
df-trkg |
⊢ TarskiG = ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) |
9 |
|
inss1 |
⊢ ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) ⊆ ( TarskiGC ∩ TarskiGB ) |
10 |
|
inss2 |
⊢ ( TarskiGC ∩ TarskiGB ) ⊆ TarskiGB |
11 |
9 10
|
sstri |
⊢ ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) ⊆ TarskiGB |
12 |
8 11
|
eqsstri |
⊢ TarskiG ⊆ TarskiGB |
13 |
12 4
|
sselid |
⊢ ( 𝜑 → 𝐺 ∈ TarskiGB ) |
14 |
1 2 3
|
istrkgb |
⊢ ( 𝐺 ∈ TarskiGB ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) ) |
15 |
14
|
simprbi |
⊢ ( 𝐺 ∈ TarskiGB → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎 ∈ 𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃 ∀ 𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏 ∈ 𝑃 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) |
16 |
15
|
simp1d |
⊢ ( 𝐺 ∈ TarskiGB → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ) |
17 |
13 16
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ) |
18 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
19 |
18 18
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐼 𝑥 ) = ( 𝑋 𝐼 𝑋 ) ) |
20 |
19
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) ↔ 𝑦 ∈ ( 𝑋 𝐼 𝑋 ) ) ) |
21 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) |
22 |
20 21
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑦 ) ) ) |
23 |
|
eleq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∈ ( 𝑋 𝐼 𝑋 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) ) ) |
24 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) |
25 |
23 24
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑦 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑦 ) ↔ ( 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑌 ) ) ) |
26 |
22 25
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) → ( 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑌 ) ) ) |
27 |
5 6 26
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) → ( 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑌 ) ) ) |
28 |
17 7 27
|
mp2d |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |