| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							axtrkg.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							axtrkg.d | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							axtrkg.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							axtrkg.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							axtgbtwnid.1 | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							axtgbtwnid.2 | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							axtgbtwnid.3 | 
							⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 𝐼 𝑋 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							df-trkg | 
							⊢ TarskiG  =  ( ( TarskiGC  ∩  TarskiGB )  ∩  ( TarskiGCB  ∩  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( LineG ‘ 𝑓 )  =  ( 𝑥  ∈  𝑝 ,  𝑦  ∈  ( 𝑝  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  𝑝  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) } ) )  | 
						
						
							| 9 | 
							
								
							 | 
							inss1 | 
							⊢ ( ( TarskiGC  ∩  TarskiGB )  ∩  ( TarskiGCB  ∩  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( LineG ‘ 𝑓 )  =  ( 𝑥  ∈  𝑝 ,  𝑦  ∈  ( 𝑝  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  𝑝  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) } ) )  ⊆  ( TarskiGC  ∩  TarskiGB )  | 
						
						
							| 10 | 
							
								
							 | 
							inss2 | 
							⊢ ( TarskiGC  ∩  TarskiGB )  ⊆  TarskiGB  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sstri | 
							⊢ ( ( TarskiGC  ∩  TarskiGB )  ∩  ( TarskiGCB  ∩  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( LineG ‘ 𝑓 )  =  ( 𝑥  ∈  𝑝 ,  𝑦  ∈  ( 𝑝  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  𝑝  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) } ) )  ⊆  TarskiGB  | 
						
						
							| 12 | 
							
								8 11
							 | 
							eqsstri | 
							⊢ TarskiG  ⊆  TarskiGB  | 
						
						
							| 13 | 
							
								12 4
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiGB )  | 
						
						
							| 14 | 
							
								1 2 3
							 | 
							istrkgb | 
							⊢ ( 𝐺  ∈  TarskiGB  ↔  ( 𝐺  ∈  V  ∧  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) )  ∧  ∀ 𝑠  ∈  𝒫  𝑃 ∀ 𝑡  ∈  𝒫  𝑃 ( ∃ 𝑎  ∈  𝑃 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝐼 𝑦 )  →  ∃ 𝑏  ∈  𝑃 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝐼 𝑦 ) ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							simprbi | 
							⊢ ( 𝐺  ∈  TarskiGB  →  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) )  ∧  ∀ 𝑠  ∈  𝒫  𝑃 ∀ 𝑡  ∈  𝒫  𝑃 ( ∃ 𝑎  ∈  𝑃 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝐼 𝑦 )  →  ∃ 𝑏  ∈  𝑃 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝐼 𝑦 ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							simp1d | 
							⊢ ( 𝐺  ∈  TarskiGB  →  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  →  𝑥  =  𝑦 ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							syl | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  →  𝑥  =  𝑦 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 )  | 
						
						
							| 19 | 
							
								18 18
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥 𝐼 𝑥 )  =  ( 𝑋 𝐼 𝑋 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eleq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  ↔  𝑦  ∈  ( 𝑋 𝐼 𝑋 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  𝑦  ↔  𝑋  =  𝑦 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  →  𝑥  =  𝑦 )  ↔  ( 𝑦  ∈  ( 𝑋 𝐼 𝑋 )  →  𝑋  =  𝑦 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ∈  ( 𝑋 𝐼 𝑋 )  ↔  𝑌  ∈  ( 𝑋 𝐼 𝑋 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑋  =  𝑦  ↔  𝑋  =  𝑌 ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							imbi12d | 
							⊢ ( 𝑦  =  𝑌  →  ( ( 𝑦  ∈  ( 𝑋 𝐼 𝑋 )  →  𝑋  =  𝑦 )  ↔  ( 𝑌  ∈  ( 𝑋 𝐼 𝑋 )  →  𝑋  =  𝑌 ) ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							rspc2v | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  →  𝑥  =  𝑦 )  →  ( 𝑌  ∈  ( 𝑋 𝐼 𝑋 )  →  𝑋  =  𝑌 ) ) )  | 
						
						
							| 27 | 
							
								5 6 26
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  →  𝑥  =  𝑦 )  →  ( 𝑌  ∈  ( 𝑋 𝐼 𝑋 )  →  𝑋  =  𝑌 ) ) )  | 
						
						
							| 28 | 
							
								17 7 27
							 | 
							mp2d | 
							⊢ ( 𝜑  →  𝑋  =  𝑌 )  |