Metamath Proof Explorer


Theorem axtgbtwnid

Description: Identity of Betweenness. Axiom A6 of Schwabhauser p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses axtrkg.p 𝑃 = ( Base ‘ 𝐺 )
axtrkg.d = ( dist ‘ 𝐺 )
axtrkg.i 𝐼 = ( Itv ‘ 𝐺 )
axtrkg.g ( 𝜑𝐺 ∈ TarskiG )
axtgbtwnid.1 ( 𝜑𝑋𝑃 )
axtgbtwnid.2 ( 𝜑𝑌𝑃 )
axtgbtwnid.3 ( 𝜑𝑌 ∈ ( 𝑋 𝐼 𝑋 ) )
Assertion axtgbtwnid ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 axtrkg.p 𝑃 = ( Base ‘ 𝐺 )
2 axtrkg.d = ( dist ‘ 𝐺 )
3 axtrkg.i 𝐼 = ( Itv ‘ 𝐺 )
4 axtrkg.g ( 𝜑𝐺 ∈ TarskiG )
5 axtgbtwnid.1 ( 𝜑𝑋𝑃 )
6 axtgbtwnid.2 ( 𝜑𝑌𝑃 )
7 axtgbtwnid.3 ( 𝜑𝑌 ∈ ( 𝑋 𝐼 𝑋 ) )
8 df-trkg TarskiG = ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) )
9 inss1 ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) ⊆ ( TarskiGC ∩ TarskiGB )
10 inss2 ( TarskiGC ∩ TarskiGB ) ⊆ TarskiGB
11 9 10 sstri ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) ⊆ TarskiGB
12 8 11 eqsstri TarskiG ⊆ TarskiGB
13 12 4 sselid ( 𝜑𝐺 ∈ TarskiGB )
14 1 2 3 istrkgb ( 𝐺 ∈ TarskiGB ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) ) )
15 14 simprbi ( 𝐺 ∈ TarskiGB → ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( 𝑢 ∈ ( 𝑥 𝐼 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝐼 𝑧 ) ) → ∃ 𝑎𝑃 ( 𝑎 ∈ ( 𝑢 𝐼 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝐼 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃 ( ∃ 𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ ( 𝑎 𝐼 𝑦 ) → ∃ 𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ ( 𝑥 𝐼 𝑦 ) ) ) )
16 15 simp1d ( 𝐺 ∈ TarskiGB → ∀ 𝑥𝑃𝑦𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) )
17 13 16 syl ( 𝜑 → ∀ 𝑥𝑃𝑦𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) )
18 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
19 18 18 oveq12d ( 𝑥 = 𝑋 → ( 𝑥 𝐼 𝑥 ) = ( 𝑋 𝐼 𝑋 ) )
20 19 eleq2d ( 𝑥 = 𝑋 → ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) ↔ 𝑦 ∈ ( 𝑋 𝐼 𝑋 ) ) )
21 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦𝑋 = 𝑦 ) )
22 20 21 imbi12d ( 𝑥 = 𝑋 → ( ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑦 ) ) )
23 eleq1 ( 𝑦 = 𝑌 → ( 𝑦 ∈ ( 𝑋 𝐼 𝑋 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) ) )
24 eqeq2 ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦𝑋 = 𝑌 ) )
25 23 24 imbi12d ( 𝑦 = 𝑌 → ( ( 𝑦 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑦 ) ↔ ( 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑌 ) ) )
26 22 25 rspc2v ( ( 𝑋𝑃𝑌𝑃 ) → ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) → ( 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑌 ) ) )
27 5 6 26 syl2anc ( 𝜑 → ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑦 ∈ ( 𝑥 𝐼 𝑥 ) → 𝑥 = 𝑦 ) → ( 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) → 𝑋 = 𝑌 ) ) )
28 17 7 27 mp2d ( 𝜑𝑋 = 𝑌 )