Step |
Hyp |
Ref |
Expression |
1 |
|
axtrkg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
axtrkg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
axtrkg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
axtrkg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
axtgcgrid.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
6 |
|
axtgcgrid.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
7 |
|
axtgcgrid.3 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
8 |
|
axtgcgrid.4 |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑍 − 𝑍 ) ) |
9 |
|
df-trkg |
⊢ TarskiG = ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) |
10 |
|
inss1 |
⊢ ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) ⊆ ( TarskiGC ∩ TarskiGB ) |
11 |
|
inss1 |
⊢ ( TarskiGC ∩ TarskiGB ) ⊆ TarskiGC |
12 |
10 11
|
sstri |
⊢ ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥 ∈ 𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) ⊆ TarskiGC |
13 |
9 12
|
eqsstri |
⊢ TarskiG ⊆ TarskiGC |
14 |
13 4
|
sselid |
⊢ ( 𝜑 → 𝐺 ∈ TarskiGC ) |
15 |
1 2 3
|
istrkgc |
⊢ ( 𝐺 ∈ TarskiGC ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) ) |
16 |
15
|
simprbi |
⊢ ( 𝐺 ∈ TarskiGC → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
17 |
16
|
simprd |
⊢ ( 𝐺 ∈ TarskiGC → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) |
18 |
14 17
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ) |
19 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 − 𝑦 ) = ( 𝑋 − 𝑦 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) ↔ ( 𝑋 − 𝑦 ) = ( 𝑧 − 𝑧 ) ) ) |
21 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) |
22 |
20 21
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑋 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑋 = 𝑦 ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 − 𝑦 ) = ( 𝑋 − 𝑌 ) ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 − 𝑦 ) = ( 𝑧 − 𝑧 ) ↔ ( 𝑋 − 𝑌 ) = ( 𝑧 − 𝑧 ) ) ) |
25 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) |
26 |
24 25
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝑋 − 𝑌 ) = ( 𝑧 − 𝑧 ) → 𝑋 = 𝑌 ) ) ) |
27 |
|
id |
⊢ ( 𝑧 = 𝑍 → 𝑧 = 𝑍 ) |
28 |
27 27
|
oveq12d |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 − 𝑧 ) = ( 𝑍 − 𝑍 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 − 𝑌 ) = ( 𝑧 − 𝑧 ) ↔ ( 𝑋 − 𝑌 ) = ( 𝑍 − 𝑍 ) ) ) |
30 |
29
|
imbi1d |
⊢ ( 𝑧 = 𝑍 → ( ( ( 𝑋 − 𝑌 ) = ( 𝑧 − 𝑧 ) → 𝑋 = 𝑌 ) ↔ ( ( 𝑋 − 𝑌 ) = ( 𝑍 − 𝑍 ) → 𝑋 = 𝑌 ) ) ) |
31 |
22 26 30
|
rspc3v |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) → ( ( 𝑋 − 𝑌 ) = ( 𝑍 − 𝑍 ) → 𝑋 = 𝑌 ) ) ) |
32 |
5 6 7 31
|
syl3anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑦 ) = ( 𝑧 − 𝑧 ) → 𝑥 = 𝑦 ) → ( ( 𝑋 − 𝑌 ) = ( 𝑍 − 𝑍 ) → 𝑋 = 𝑌 ) ) ) |
33 |
18 8 32
|
mp2d |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |