| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axtrkg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | axtrkg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | axtrkg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | axtrkg.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | axtgcgrid.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 6 |  | axtgcgrid.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 7 |  | axtgcgrid.3 | ⊢ ( 𝜑  →  𝑍  ∈  𝑃 ) | 
						
							| 8 |  | axtgcgrid.4 | ⊢ ( 𝜑  →  ( 𝑋  −  𝑌 )  =  ( 𝑍  −  𝑍 ) ) | 
						
							| 9 |  | df-trkg | ⊢ TarskiG  =  ( ( TarskiGC  ∩  TarskiGB )  ∩  ( TarskiGCB  ∩  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( LineG ‘ 𝑓 )  =  ( 𝑥  ∈  𝑝 ,  𝑦  ∈  ( 𝑝  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  𝑝  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) | 
						
							| 10 |  | inss1 | ⊢ ( ( TarskiGC  ∩  TarskiGB )  ∩  ( TarskiGCB  ∩  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( LineG ‘ 𝑓 )  =  ( 𝑥  ∈  𝑝 ,  𝑦  ∈  ( 𝑝  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  𝑝  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) } ) )  ⊆  ( TarskiGC  ∩  TarskiGB ) | 
						
							| 11 |  | inss1 | ⊢ ( TarskiGC  ∩  TarskiGB )  ⊆  TarskiGC | 
						
							| 12 | 10 11 | sstri | ⊢ ( ( TarskiGC  ∩  TarskiGB )  ∩  ( TarskiGCB  ∩  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( LineG ‘ 𝑓 )  =  ( 𝑥  ∈  𝑝 ,  𝑦  ∈  ( 𝑝  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  𝑝  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) } ) )  ⊆  TarskiGC | 
						
							| 13 | 9 12 | eqsstri | ⊢ TarskiG  ⊆  TarskiGC | 
						
							| 14 | 13 4 | sselid | ⊢ ( 𝜑  →  𝐺  ∈  TarskiGC ) | 
						
							| 15 | 1 2 3 | istrkgc | ⊢ ( 𝐺  ∈  TarskiGC  ↔  ( 𝐺  ∈  V  ∧  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑥  −  𝑦 )  =  ( 𝑦  −  𝑥 )  ∧  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ( ( 𝑥  −  𝑦 )  =  ( 𝑧  −  𝑧 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 16 | 15 | simprbi | ⊢ ( 𝐺  ∈  TarskiGC  →  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑥  −  𝑦 )  =  ( 𝑦  −  𝑥 )  ∧  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ( ( 𝑥  −  𝑦 )  =  ( 𝑧  −  𝑧 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 17 | 16 | simprd | ⊢ ( 𝐺  ∈  TarskiGC  →  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ( ( 𝑥  −  𝑦 )  =  ( 𝑧  −  𝑧 )  →  𝑥  =  𝑦 ) ) | 
						
							| 18 | 14 17 | syl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ( ( 𝑥  −  𝑦 )  =  ( 𝑧  −  𝑧 )  →  𝑥  =  𝑦 ) ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  −  𝑦 )  =  ( 𝑋  −  𝑦 ) ) | 
						
							| 20 | 19 | eqeq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  −  𝑦 )  =  ( 𝑧  −  𝑧 )  ↔  ( 𝑋  −  𝑦 )  =  ( 𝑧  −  𝑧 ) ) ) | 
						
							| 21 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  𝑦  ↔  𝑋  =  𝑦 ) ) | 
						
							| 22 | 20 21 | imbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝑥  −  𝑦 )  =  ( 𝑧  −  𝑧 )  →  𝑥  =  𝑦 )  ↔  ( ( 𝑋  −  𝑦 )  =  ( 𝑧  −  𝑧 )  →  𝑋  =  𝑦 ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋  −  𝑦 )  =  ( 𝑋  −  𝑌 ) ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑋  −  𝑦 )  =  ( 𝑧  −  𝑧 )  ↔  ( 𝑋  −  𝑌 )  =  ( 𝑧  −  𝑧 ) ) ) | 
						
							| 25 |  | eqeq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋  =  𝑦  ↔  𝑋  =  𝑌 ) ) | 
						
							| 26 | 24 25 | imbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( ( 𝑋  −  𝑦 )  =  ( 𝑧  −  𝑧 )  →  𝑋  =  𝑦 )  ↔  ( ( 𝑋  −  𝑌 )  =  ( 𝑧  −  𝑧 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 27 |  | id | ⊢ ( 𝑧  =  𝑍  →  𝑧  =  𝑍 ) | 
						
							| 28 | 27 27 | oveq12d | ⊢ ( 𝑧  =  𝑍  →  ( 𝑧  −  𝑧 )  =  ( 𝑍  −  𝑍 ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑋  −  𝑌 )  =  ( 𝑧  −  𝑧 )  ↔  ( 𝑋  −  𝑌 )  =  ( 𝑍  −  𝑍 ) ) ) | 
						
							| 30 | 29 | imbi1d | ⊢ ( 𝑧  =  𝑍  →  ( ( ( 𝑋  −  𝑌 )  =  ( 𝑧  −  𝑧 )  →  𝑋  =  𝑌 )  ↔  ( ( 𝑋  −  𝑌 )  =  ( 𝑍  −  𝑍 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 31 | 22 26 30 | rspc3v | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑍  ∈  𝑃 )  →  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ( ( 𝑥  −  𝑦 )  =  ( 𝑧  −  𝑧 )  →  𝑥  =  𝑦 )  →  ( ( 𝑋  −  𝑌 )  =  ( 𝑍  −  𝑍 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 32 | 5 6 7 31 | syl3anc | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ( ( 𝑥  −  𝑦 )  =  ( 𝑧  −  𝑧 )  →  𝑥  =  𝑦 )  →  ( ( 𝑋  −  𝑌 )  =  ( 𝑍  −  𝑍 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 33 | 18 8 32 | mp2d | ⊢ ( 𝜑  →  𝑋  =  𝑌 ) |