Metamath Proof Explorer


Theorem axtglowdim2

Description: Lower dimension axiom for dimension 2, Axiom A8 of Schwabhauser p. 13. There exist 3 non-colinear points. (Contributed by Thierry Arnoux, 20-Nov-2019)

Ref Expression
Hypotheses axtrkge.p 𝑃 = ( Base ‘ 𝐺 )
axtrkge.d = ( dist ‘ 𝐺 )
axtrkge.i 𝐼 = ( Itv ‘ 𝐺 )
axtglowdim2.v ( 𝜑𝐺𝑉 )
axtglowdim2.g ( 𝜑𝐺 DimTarskiG≥ 2 )
Assertion axtglowdim2 ( 𝜑 → ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 axtrkge.p 𝑃 = ( Base ‘ 𝐺 )
2 axtrkge.d = ( dist ‘ 𝐺 )
3 axtrkge.i 𝐼 = ( Itv ‘ 𝐺 )
4 axtglowdim2.v ( 𝜑𝐺𝑉 )
5 axtglowdim2.g ( 𝜑𝐺 DimTarskiG≥ 2 )
6 1 2 3 istrkg2ld ( 𝐺𝑉 → ( 𝐺 DimTarskiG≥ 2 ↔ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) )
7 4 6 syl ( 𝜑 → ( 𝐺 DimTarskiG≥ 2 ↔ ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) )
8 5 7 mpbid ( 𝜑 → ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) )