Step |
Hyp |
Ref |
Expression |
1 |
|
axtrkge.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
axtrkge.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
axtrkge.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
axtglowdim2.v |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
5 |
|
axtglowdim2.g |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
1 2 3
|
istrkg2ld |
⊢ ( 𝐺 ∈ 𝑉 → ( 𝐺 DimTarskiG≥ 2 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝐺 DimTarskiG≥ 2 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) |
8 |
5 7
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) |