| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							axtrkg.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							axtrkg.d | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							axtrkg.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							axtrkg.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							axtgpasch.1 | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							axtgpasch.2 | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							axtgpasch.3 | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							axtgpasch.4 | 
							⊢ ( 𝜑  →  𝑈  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							axtgpasch.5 | 
							⊢ ( 𝜑  →  𝑉  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							axtgpasch.6 | 
							⊢ ( 𝜑  →  𝑈  ∈  ( 𝑋 𝐼 𝑍 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							axtgpasch.7 | 
							⊢ ( 𝜑  →  𝑉  ∈  ( 𝑌 𝐼 𝑍 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							df-trkg | 
							⊢ TarskiG  =  ( ( TarskiGC  ∩  TarskiGB )  ∩  ( TarskiGCB  ∩  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( LineG ‘ 𝑓 )  =  ( 𝑥  ∈  𝑝 ,  𝑦  ∈  ( 𝑝  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  𝑝  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) } ) )  | 
						
						
							| 13 | 
							
								
							 | 
							inss1 | 
							⊢ ( ( TarskiGC  ∩  TarskiGB )  ∩  ( TarskiGCB  ∩  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( LineG ‘ 𝑓 )  =  ( 𝑥  ∈  𝑝 ,  𝑦  ∈  ( 𝑝  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  𝑝  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) } ) )  ⊆  ( TarskiGC  ∩  TarskiGB )  | 
						
						
							| 14 | 
							
								
							 | 
							inss2 | 
							⊢ ( TarskiGC  ∩  TarskiGB )  ⊆  TarskiGB  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sstri | 
							⊢ ( ( TarskiGC  ∩  TarskiGB )  ∩  ( TarskiGCB  ∩  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( LineG ‘ 𝑓 )  =  ( 𝑥  ∈  𝑝 ,  𝑦  ∈  ( 𝑝  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  𝑝  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) } ) )  ⊆  TarskiGB  | 
						
						
							| 16 | 
							
								12 15
							 | 
							eqsstri | 
							⊢ TarskiG  ⊆  TarskiGB  | 
						
						
							| 17 | 
							
								16 4
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiGB )  | 
						
						
							| 18 | 
							
								1 2 3
							 | 
							istrkgb | 
							⊢ ( 𝐺  ∈  TarskiGB  ↔  ( 𝐺  ∈  V  ∧  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) )  ∧  ∀ 𝑠  ∈  𝒫  𝑃 ∀ 𝑡  ∈  𝒫  𝑃 ( ∃ 𝑎  ∈  𝑃 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝐼 𝑦 )  →  ∃ 𝑏  ∈  𝑃 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝐼 𝑦 ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simprbi | 
							⊢ ( 𝐺  ∈  TarskiGB  →  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ( 𝑦  ∈  ( 𝑥 𝐼 𝑥 )  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) )  ∧  ∀ 𝑠  ∈  𝒫  𝑃 ∀ 𝑡  ∈  𝒫  𝑃 ( ∃ 𝑎  ∈  𝑃 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝐼 𝑦 )  →  ∃ 𝑏  ∈  𝑃 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝐼 𝑦 ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							simp2d | 
							⊢ ( 𝐺  ∈  TarskiGB  →  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							syl | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥 𝐼 𝑧 )  =  ( 𝑋 𝐼 𝑧 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							eleq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ↔  𝑢  ∈  ( 𝑋 𝐼 𝑧 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							anbi1d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  ↔  ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑣 𝐼 𝑥 )  =  ( 𝑣 𝐼 𝑋 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							eleq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑎  ∈  ( 𝑣 𝐼 𝑥 )  ↔  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) )  ↔  ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							rexbidv | 
							⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) )  ↔  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) )  | 
						
						
							| 29 | 
							
								24 28
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) )  ↔  ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							2ralbidv | 
							⊢ ( 𝑥  =  𝑋  →  ( ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) )  ↔  ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑦 𝐼 𝑧 )  =  ( 𝑌 𝐼 𝑧 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							eleq2d | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑣  ∈  ( 𝑦 𝐼 𝑧 )  ↔  𝑣  ∈  ( 𝑌 𝐼 𝑧 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							anbi2d | 
							⊢ ( 𝑦  =  𝑌  →  ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  ↔  ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑧 ) ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑢 𝐼 𝑦 )  =  ( 𝑢 𝐼 𝑌 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							eleq2d | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ↔  𝑎  ∈  ( 𝑢 𝐼 𝑌 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							anbi1d | 
							⊢ ( 𝑦  =  𝑌  →  ( ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) )  ↔  ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							rexbidv | 
							⊢ ( 𝑦  =  𝑌  →  ( ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) )  ↔  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) )  | 
						
						
							| 38 | 
							
								33 37
							 | 
							imbi12d | 
							⊢ ( 𝑦  =  𝑌  →  ( ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) )  ↔  ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							2ralbidv | 
							⊢ ( 𝑦  =  𝑌  →  ( ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) )  ↔  ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑧  =  𝑍  →  ( 𝑋 𝐼 𝑧 )  =  ( 𝑋 𝐼 𝑍 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							eleq2d | 
							⊢ ( 𝑧  =  𝑍  →  ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ↔  𝑢  ∈  ( 𝑋 𝐼 𝑍 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑧  =  𝑍  →  ( 𝑌 𝐼 𝑧 )  =  ( 𝑌 𝐼 𝑍 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							eleq2d | 
							⊢ ( 𝑧  =  𝑍  →  ( 𝑣  ∈  ( 𝑌 𝐼 𝑧 )  ↔  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) ) )  | 
						
						
							| 44 | 
							
								41 43
							 | 
							anbi12d | 
							⊢ ( 𝑧  =  𝑍  →  ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑧 ) )  ↔  ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							imbi1d | 
							⊢ ( 𝑧  =  𝑍  →  ( ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) )  ↔  ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							2ralbidv | 
							⊢ ( 𝑧  =  𝑍  →  ( ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) )  ↔  ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 47 | 
							
								30 39 46
							 | 
							rspc3v | 
							⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑍  ∈  𝑃 )  →  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) )  →  ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 48 | 
							
								5 6 7 47
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑃 ∀ 𝑦  ∈  𝑃 ∀ 𝑧  ∈  𝑃 ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑥 𝐼 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝐼 𝑧 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑥 ) ) )  →  ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 49 | 
							
								21 48
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑢  =  𝑈  →  ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ↔  𝑈  ∈  ( 𝑋 𝐼 𝑍 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							anbi1d | 
							⊢ ( 𝑢  =  𝑈  →  ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  ↔  ( 𝑈  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑢  =  𝑈  →  ( 𝑢 𝐼 𝑌 )  =  ( 𝑈 𝐼 𝑌 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							eleq2d | 
							⊢ ( 𝑢  =  𝑈  →  ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ↔  𝑎  ∈  ( 𝑈 𝐼 𝑌 ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							anbi1d | 
							⊢ ( 𝑢  =  𝑈  →  ( ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) )  ↔  ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							rexbidv | 
							⊢ ( 𝑢  =  𝑈  →  ( ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) )  ↔  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) )  | 
						
						
							| 56 | 
							
								51 55
							 | 
							imbi12d | 
							⊢ ( 𝑢  =  𝑈  →  ( ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) )  ↔  ( ( 𝑈  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 57 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑣  =  𝑉  →  ( 𝑣  ∈  ( 𝑌 𝐼 𝑍 )  ↔  𝑉  ∈  ( 𝑌 𝐼 𝑍 ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							anbi2d | 
							⊢ ( 𝑣  =  𝑉  →  ( ( 𝑈  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  ↔  ( 𝑈  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑉  ∈  ( 𝑌 𝐼 𝑍 ) ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑣  =  𝑉  →  ( 𝑣 𝐼 𝑋 )  =  ( 𝑉 𝐼 𝑋 ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							eleq2d | 
							⊢ ( 𝑣  =  𝑉  →  ( 𝑎  ∈  ( 𝑣 𝐼 𝑋 )  ↔  𝑎  ∈  ( 𝑉 𝐼 𝑋 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							anbi2d | 
							⊢ ( 𝑣  =  𝑉  →  ( ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) )  ↔  ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑉 𝐼 𝑋 ) ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							rexbidv | 
							⊢ ( 𝑣  =  𝑉  →  ( ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) )  ↔  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑉 𝐼 𝑋 ) ) ) )  | 
						
						
							| 63 | 
							
								58 62
							 | 
							imbi12d | 
							⊢ ( 𝑣  =  𝑉  →  ( ( ( 𝑈  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) )  ↔  ( ( 𝑈  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑉  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑉 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 64 | 
							
								56 63
							 | 
							rspc2v | 
							⊢ ( ( 𝑈  ∈  𝑃  ∧  𝑉  ∈  𝑃 )  →  ( ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) )  →  ( ( 𝑈  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑉  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑉 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 65 | 
							
								8 9 64
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ∀ 𝑢  ∈  𝑃 ∀ 𝑣  ∈  𝑃 ( ( 𝑢  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑣  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑢 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑣 𝐼 𝑋 ) ) )  →  ( ( 𝑈  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑉  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑉 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 66 | 
							
								49 65
							 | 
							mpd | 
							⊢ ( 𝜑  →  ( ( 𝑈  ∈  ( 𝑋 𝐼 𝑍 )  ∧  𝑉  ∈  ( 𝑌 𝐼 𝑍 ) )  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑉 𝐼 𝑋 ) ) ) )  | 
						
						
							| 67 | 
							
								10 11 66
							 | 
							mp2and | 
							⊢ ( 𝜑  →  ∃ 𝑎  ∈  𝑃 ( 𝑎  ∈  ( 𝑈 𝐼 𝑌 )  ∧  𝑎  ∈  ( 𝑉 𝐼 𝑋 ) ) )  |