| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axunndlem1 |
⊢ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) |
| 2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 3 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 |
| 4 |
2 3
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 5 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 6 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑧 |
| 7 |
5 6
|
nfan |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 9 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
| 10 |
9
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 11 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) |
| 12 |
10 11
|
nfeld |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ∈ 𝑤 ) |
| 13 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) |
| 14 |
13
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ) |
| 15 |
11 14
|
nfeld |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑧 ) |
| 16 |
12 15
|
nfand |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ) |
| 17 |
8 16
|
nfexd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ) |
| 18 |
17 12
|
nfimd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 19 |
7 18
|
nfald |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 20 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) |
| 21 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ) |
| 22 |
21
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
| 23 |
20 22
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 = 𝑥 ) |
| 24 |
7 23
|
nfan1 |
⊢ Ⅎ 𝑦 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) |
| 25 |
|
elequ2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
| 26 |
|
elequ1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
| 27 |
25 26
|
anbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
| 28 |
27
|
a1i |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) ) |
| 29 |
4 16 28
|
cbvexd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
| 31 |
25
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
| 32 |
30 31
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 33 |
24 32
|
albid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 34 |
33
|
ex |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 35 |
4 19 34
|
cbvexd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 36 |
1 35
|
mpbii |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 37 |
36
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 38 |
|
nfae |
⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥 = 𝑦 |
| 39 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑦 |
| 40 |
|
elirrv |
⊢ ¬ 𝑦 ∈ 𝑦 |
| 41 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 42 |
40 41
|
mtbiri |
⊢ ( 𝑥 = 𝑦 → ¬ 𝑦 ∈ 𝑥 ) |
| 43 |
42
|
intnanrd |
⊢ ( 𝑥 = 𝑦 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 44 |
43
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 45 |
39 44
|
nexd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 46 |
45
|
pm2.21d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 47 |
38 46
|
alrimi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 48 |
47
|
19.8ad |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 49 |
|
nfae |
⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥 = 𝑧 |
| 50 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 |
| 51 |
|
elirrv |
⊢ ¬ 𝑧 ∈ 𝑧 |
| 52 |
|
elequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧 ) ) |
| 53 |
51 52
|
mtbiri |
⊢ ( 𝑥 = 𝑧 → ¬ 𝑥 ∈ 𝑧 ) |
| 54 |
53
|
intnand |
⊢ ( 𝑥 = 𝑧 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 55 |
54
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 56 |
50 55
|
nexd |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 57 |
56
|
pm2.21d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 58 |
49 57
|
alrimi |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 59 |
58
|
19.8ad |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 60 |
37 48 59
|
pm2.61ii |
⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |