Metamath Proof Explorer


Theorem axunnd

Description: A version of the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axunnd 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 axunndlem1 𝑤𝑦 ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑤 )
2 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
3 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧
4 2 3 nfan 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 )
5 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦
6 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑧
7 5 6 nfan 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 )
8 nfv 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 )
9 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝑦 )
10 9 adantr ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑥 𝑦 )
11 nfcvd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑥 𝑤 )
12 10 11 nfeld ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦𝑤 )
13 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑧 𝑥 𝑧 )
14 13 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑥 𝑧 )
15 11 14 nfeld ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤𝑧 )
16 12 15 nfand ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑦𝑤𝑤𝑧 ) )
17 8 16 nfexd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥𝑤 ( 𝑦𝑤𝑤𝑧 ) )
18 17 12 nfimd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑤 ) )
19 7 18 nfald ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥𝑦 ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑤 ) )
20 nfcvd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑦 𝑤 )
21 nfcvf2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑦 𝑥 )
22 21 adantr ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑦 𝑥 )
23 20 22 nfeqd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 = 𝑥 )
24 7 23 nfan1 𝑦 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 )
25 elequ2 ( 𝑤 = 𝑥 → ( 𝑦𝑤𝑦𝑥 ) )
26 elequ1 ( 𝑤 = 𝑥 → ( 𝑤𝑧𝑥𝑧 ) )
27 25 26 anbi12d ( 𝑤 = 𝑥 → ( ( 𝑦𝑤𝑤𝑧 ) ↔ ( 𝑦𝑥𝑥𝑧 ) ) )
28 27 a1i ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑦𝑤𝑤𝑧 ) ↔ ( 𝑦𝑥𝑥𝑧 ) ) ) )
29 4 16 28 cbvexd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) ↔ ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) ) )
30 29 adantr ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) ↔ ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) ) )
31 25 adantl ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑦𝑤𝑦𝑥 ) )
32 30 31 imbi12d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑤 ) ↔ ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) ) )
33 24 32 albid ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) ) )
34 33 ex ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) ) ) )
35 4 19 34 cbvexd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤𝑦 ( ∃ 𝑤 ( 𝑦𝑤𝑤𝑧 ) → 𝑦𝑤 ) ↔ ∃ 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) ) )
36 1 35 mpbii ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∃ 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
37 36 ex ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) ) )
38 nfae 𝑦𝑥 𝑥 = 𝑦
39 nfae 𝑥𝑥 𝑥 = 𝑦
40 elirrv ¬ 𝑦𝑦
41 elequ2 ( 𝑥 = 𝑦 → ( 𝑦𝑥𝑦𝑦 ) )
42 40 41 mtbiri ( 𝑥 = 𝑦 → ¬ 𝑦𝑥 )
43 42 intnanrd ( 𝑥 = 𝑦 → ¬ ( 𝑦𝑥𝑥𝑧 ) )
44 43 sps ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ( 𝑦𝑥𝑥𝑧 ) )
45 39 44 nexd ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) )
46 45 pm2.21d ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
47 38 46 alrimi ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
48 47 19.8ad ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
49 nfae 𝑦𝑥 𝑥 = 𝑧
50 nfae 𝑥𝑥 𝑥 = 𝑧
51 elirrv ¬ 𝑧𝑧
52 elequ1 ( 𝑥 = 𝑧 → ( 𝑥𝑧𝑧𝑧 ) )
53 51 52 mtbiri ( 𝑥 = 𝑧 → ¬ 𝑥𝑧 )
54 53 intnand ( 𝑥 = 𝑧 → ¬ ( 𝑦𝑥𝑥𝑧 ) )
55 54 sps ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ( 𝑦𝑥𝑥𝑧 ) )
56 50 55 nexd ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) )
57 56 pm2.21d ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
58 49 57 alrimi ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
59 58 19.8ad ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 ) )
60 37 48 59 pm2.61ii 𝑥𝑦 ( ∃ 𝑥 ( 𝑦𝑥𝑥𝑧 ) → 𝑦𝑥 )