Step |
Hyp |
Ref |
Expression |
1 |
|
bafval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
bafval.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = ( +𝑣 ‘ 𝑈 ) ) |
4 |
3
|
rneqd |
⊢ ( 𝑢 = 𝑈 → ran ( +𝑣 ‘ 𝑢 ) = ran ( +𝑣 ‘ 𝑈 ) ) |
5 |
|
df-ba |
⊢ BaseSet = ( 𝑢 ∈ V ↦ ran ( +𝑣 ‘ 𝑢 ) ) |
6 |
|
fvex |
⊢ ( +𝑣 ‘ 𝑈 ) ∈ V |
7 |
6
|
rnex |
⊢ ran ( +𝑣 ‘ 𝑈 ) ∈ V |
8 |
4 5 7
|
fvmpt |
⊢ ( 𝑈 ∈ V → ( BaseSet ‘ 𝑈 ) = ran ( +𝑣 ‘ 𝑈 ) ) |
9 |
|
rn0 |
⊢ ran ∅ = ∅ |
10 |
9
|
eqcomi |
⊢ ∅ = ran ∅ |
11 |
|
fvprc |
⊢ ( ¬ 𝑈 ∈ V → ( BaseSet ‘ 𝑈 ) = ∅ ) |
12 |
|
fvprc |
⊢ ( ¬ 𝑈 ∈ V → ( +𝑣 ‘ 𝑈 ) = ∅ ) |
13 |
12
|
rneqd |
⊢ ( ¬ 𝑈 ∈ V → ran ( +𝑣 ‘ 𝑈 ) = ran ∅ ) |
14 |
10 11 13
|
3eqtr4a |
⊢ ( ¬ 𝑈 ∈ V → ( BaseSet ‘ 𝑈 ) = ran ( +𝑣 ‘ 𝑈 ) ) |
15 |
8 14
|
pm2.61i |
⊢ ( BaseSet ‘ 𝑈 ) = ran ( +𝑣 ‘ 𝑈 ) |
16 |
2
|
rneqi |
⊢ ran 𝐺 = ran ( +𝑣 ‘ 𝑈 ) |
17 |
15 1 16
|
3eqtr4i |
⊢ 𝑋 = ran 𝐺 |