Metamath Proof Explorer


Theorem baibr

Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994)

Ref Expression
Hypothesis baib.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion baibr ( 𝜓 → ( 𝜒𝜑 ) )

Proof

Step Hyp Ref Expression
1 baib.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 baib ( 𝜓 → ( 𝜑𝜒 ) )
3 2 bicomd ( 𝜓 → ( 𝜒𝜑 ) )