Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
11 |
|
nnaddcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
12 |
1 2 11
|
mp2an |
⊢ ( 𝑀 + 𝑁 ) ∈ ℕ |
13 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
14 |
12 13
|
eleqtri |
⊢ ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) |
15 |
|
eluzfz1 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
16 |
14 15
|
mp1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 1 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
17 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
18 |
17
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
19 |
|
elfzle1 |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 1 ≤ ( 𝐼 ‘ 𝐶 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 1 ≤ ( 𝐼 ‘ 𝐶 ) ) |
21 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemrv1 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 1 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 1 ≤ ( 𝐼 ‘ 𝐶 ) ) → ( 1 ∈ ( 𝑅 ‘ 𝐶 ) ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 1 ) ∈ 𝐶 ) ) |
22 |
16 20 21
|
mpd3an23 |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 1 ∈ ( 𝑅 ‘ 𝐶 ) ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 1 ) ∈ 𝐶 ) ) |
23 |
18
|
elfzelzd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
24 |
23
|
zcnd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ℂ ) |
25 |
|
1cnd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 1 ∈ ℂ ) |
26 |
24 25
|
pncand |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 1 ) = ( 𝐼 ‘ 𝐶 ) ) |
27 |
26
|
eleq1d |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 1 ) ∈ 𝐶 ↔ ( 𝐼 ‘ 𝐶 ) ∈ 𝐶 ) ) |
28 |
22 27
|
bitrd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 1 ∈ ( 𝑅 ‘ 𝐶 ) ↔ ( 𝐼 ‘ 𝐶 ) ∈ 𝐶 ) ) |